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Abstract

To build complex genetic networks with predictable behaviors, synthetic biologists

use libraries of modular parts that can be characterized in isolation and assembled

together to create programmable higher‐order functions. Characterization experi-

ments and computational models for gene regulatory parts operating in isolation are

routinely used to predict the dynamics of interconnected parts and guide the

construction of new synthetic devices. Here, we individually characterize two modes

of RNA‐based transcriptional regulation, using small transcription activating RNAs

(STARs) and clustered regularly interspaced short palindromic repeats interference

(CRISPRi), and show how their distinct regulatory timescales can be used to engineer

a composed feedforward loop that creates a pulse of gene expression. We use a cell‐

free transcription‐translation system (TXTL) to rapidly characterize the system, and

we apply Bayesian inference to extract kinetic parameters for an ordinary differential

equation‐based mechanistic model. We then demonstrate in simulation and verify

with TXTL experiments that the simultaneous regulation of a single gene target with

STARs and CRISPRi leads to a pulse of gene expression. Our results suggest the

modularity of the two regulators in an integrated genetic circuit, and we anticipate

that construction and modeling frameworks that can leverage this modularity will

become increasingly important as synthetic circuits increase in complexity.
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1 | INTRODUCTION

An important goal of synthetic biology is the development of rational

methods for precise temporal control of gene expression, which is

necessary to achieve sophisticated dynamic functions in engineered

cells (Gupta, Reizman, Reisch, & Prather, 2017). Toward this broad

goal, libraries of synthetic regulatory parts have been developed to

give synthetic biologists control over distinct levels of gene

expression (Chappell, Westbrook, Verosloff, & Lucks, 2017; Green,

Silver, Collins, & Yin, 2014). To create more complex networks, these

parts need to be modular and composable (Lucks, Qi, Whitaker, &

Arkin, 2008), performing their function within the network with
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minimal undesired interactions. RNA provides a powerful platform to

achieve this.

RNA‐based regulators have become increasingly popular for

building libraries of synthetic parts to orthogonally control many

aspects of gene expression (Carrier & Keasling, 1999; Chappell et al.,

2013; Chappell et al., 2017; Green et al., 2014; Lucks, Qi, Mutalik,

Wang, & Arkin, 2011), RNA transcriptional regulators are particularly

interesting because they can regulate RNA synthesis as a function of

a RNA input and thus can be used to create genetic circuitry that

propagates signals on the RNA level (Lucks et al., 2011; Takahashi,

Chappell et al., 2015). These circuits have many potential advantages

over protein‐based circuits, including the ability to leverage RNA‐

folding algorithms and high‐throughput structure determination to

optimize regulatory part folding and function (Takahashi et al., 2016),

to reduce metabolic load for the host (Beisel & Storz, 2010), and to

allow rapid signal propagation due to their fast degradation rates

(Takahashi, Chappell et al., 2015).

Here we focus on building a simple genetic network by combining

two modes of RNA‐based transcriptional regulation: using small

transcription activating RNAs (STARs; Chappell, Takahashi, & Lucks,

2015) and clustered regularly interspaced short palindromic repeats

interference (CRISPRi; Bikard et al., 2013; Qi et al., 2013). STARs

activate gene expression through an interaction with a sequence

specific target RNA. The target RNA resides in the 5′‐untranslated

region (5′‐UTR) of the gene of interest and folds into a transcriptional

terminator that halts transcription by causing the polymerase to fall

off of the DNA complex before the downstream gene. When present,

the activating RNA—called the STAR—binds to the target RNA to

prevent terminator formation, thus allowing downstream transcrip-

tion to turn gene expression ON (Figure 1a). Libraries of orthogonal

STARs have been built and shown to work in many contexts,

including within genomic DNA to reprogram cellular phenotypes, and

to control multiple genes within a metabolic pathway (Chappell et al.,

2015; Chappell et al., 2017).

CRISPRi is a method of transcriptional repression that relies on

targeting a catalytically dead Cas9 (dCas9) nuclease to a gene (Qi

et al., 2013). Targeting is dictated by a guide RNA (gRNA) with a

short segment that is complementary to the sequence of interest.

Here we use the Streptococcus pyrogenes Cas9 that targets sequences

flanked by a 3′ NGG PAM. Binding of the dCas9:gRNA ribonucleo-

protein complex to DNA can either block polymerase binding if the

targeted region is near a promoter or halt transcription elongation if

the targeted region is within a gene. Orthogonal gRNAs can be

designed to independently regulate multiple genes or to integrate

signals for genetic circuits such as logic gates (Gander, Vrana, Voje,

Carothers, & Klavins, 2017). In nature, gRNAs are produced by

RNase III cleavage of double stranded RNA formed by the binding of

a trans‐activating CRISPR RNA (tracrRNA) to complementary

sequences in a transcribed CRISPR RNA (Deltcheva et al., 2011).

The resulting processed CRISPR RNA (crRNA) binds to Cas9 (or

dCas9) to form an active ribonucleoprotein complex (Figure 1b).

CRISPRi works efficiently using either gRNAs produced by the

processing of crRNA/tracrRNA duplexes or using single‐guide RNAs

which fuse the tracrRNA and crRNA to mimic the processed form

using a single molecule (Jinek et al., 2012). In this study we use

separate crRNA and tracrRNA because they represent the natural

form of the gRNA as it is expressed in bacteria, and they also add to

an additional time delay in the CRISPRi regulation due to the kinetics

of pairing between the RNAs.

One difference between STAR and CRISPRi mechanisms is the

timescale on which the regulation occurs. STARs rely on one

cotranscriptional RNA‐RNA interaction that results in transcription

activation typically within minutes (Chappell et al., 2017), while

CRISPRi requires the formation of a RNA‐protein repressor complex

before binding to DNA for repression, which has been shown to take

on the order of 1 hr for regulation to occur (Qi et al., 2013). This

timescale difference between these two opposing modes of gene

regulation thus creates an intriguing possibility to use STARs and

CRISPRi to engineer a network that produces a pulse of gene

expression, similar to the incoherent type‐1 feedforward loop (I1‐

FFL; Mangan & Alon, 2003).

The I1‐FFL is a common network motif in natural bacterial

networks (Alon, 2013; Milo et al., 2002; Shen‐Orr, Milo, Mangan, &

Alon, 2002) and has received much interest due to its ability to

produce a pulse of gene expression (Basu, Mehreja, Thiberge, Chen, &

Weiss, 2004; Mangan & Alon, 2003) and accelerate the response

time (Mangan, Itzkovitz, Zaslaver, & Alon, 2006). I1‐FFLs have also

been used to implement band‐pass filters (Entus, Aufderheide, &

Sauro, 2007; Kaplan, Bren, Dekel, & Alon, 2008), fold‐change

detection (Goentoro, Shoval, Kirschner, & Alon, 2009), biosensing

(Barone et al., 2017), and noise buffering (Osella, Bosia, Corá, &

Caselle, 2011). An I1‐FFL consists of an activator X that activates a

gene Z and simultaneously its repressor, Y (Figure 1c). It can produce

a pulse of gene Z expression because the activation reaction is

triggered immediately by X, while the dominating repression occurs

with a delay due to the presence of the intermediate component Y

(Mangan & Alon, 2003). Here, we exploit STARs to induce rapid

activation of gene expression, and CRISPRi to achieve delayed

repression due to the slow assembly of the gRNA‐dCas9 complex.

We expect that, when combined, these two RNA‐based regulatory

mechanisms will operate on timescales that are sufficiently different

to yield a transient pulse of gene expression (Figure 1d). While our

design is not an I1‐FFL by a strict definition, it accomplishes the same

general behavior and should produce a pulse of gene expression by

exploiting the regulatory timescale differences to cause the delayed

repression of Z after fast activation.

A challenge in interconnecting molecular components character-

ized in isolation is that unexpected interactions between species and

resource competition can affect the predicted operation of the

composed system, as demonstrated previously (Qian, Huang,

Jiménez, & Del Vecchio, 2017). Reaction rates can be affected by

possible crosstalk between the components and the relative

abundance of RNA species and dCas9, which are subject to biological

noise and circuit complexity (Mishra, Rivera, Lin, Del Vecchio, &

Weiss, 2014), thus making the prediction of the integrated construct

dynamics necessary and challenging. To address these challenges, we
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use an interdisciplinary approach that combines cell‐free experi-

ments and mathematical modeling.

Mathematical models have gained popularity in guiding the

construction and characterization of dynamic molecular systems,

given their cost‐effectiveness and efficiency as compared with

experiments (Hu, Varner, & Lucks, 2015; Liao, Blanchard, & Lu,

2017; Nielsen et al., 2016; Duschak, 2015). Ordinary differential

equations (ODEs) are an effective tool to model molecular reaction

networks, gene expression in protein‐based genetic network systems

(Alon, 2013; Del Vecchio & Murray, 2017), and small RNA

transcriptional circuits (Hu et al., 2015; O’Brien, Itallie, & Bennett,

2012). ODEs are particularly suitable to model and parameterize cell‐

free reactions, where initial concentration of chemical species can be

accurately controlled. To rapidly characterize the STAR and CRISPRi

reactions we developed ordinary differential equation (ODE) models

based on experiments performed with transcription‐translation

system (TXTL), an Escherichia coli cell‐free transcription‐translation

platform (Sun et al., 2013). TXTL experiments have been successfully
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F IGURE 1 Architecture of a I1‐FFL composed of STAR activation and CRISPRi repression. (a) STAR mechanism. The target RNA sequence

folds into a transcriptional terminator (blue) that causes RNA polymerase to ratchet off the DNA complex and halt transcription upstream of

the gene (gene OFF). When present, a STAR (red) binds to both the linear region and the 5′ half of the terminator hairpin (blue) of the target

RNA, preventing terminator formation and allowing transcription elongation of the gene (gene ON). (b) CRISPRi mechanism. The crRNA,

tracrRNA, and dCas9 bind to form the CRISPR complex that specifically binds to a DNA sequence encoded by the crRNA sequence. When

bound the CRISPR complex either blocks transcription initiation or transcription elongation. (c) The I1‐FFL motif consists of three parts. An

activator X activates expression of Z and its repressor, Y. (d) The pulse generator circuit works by taking advantage of fast STAR activation and

slow CRISPRi repression. STAR activates GFP expression immediately while the crRNA/tracrRNA/dCas9 formation causes a delay before finally

repressing GFP expression. In TXTL there is no protein degradation, so this causes a pulse in the rate of GFP production. CRISPRi: clustered

regularly interspaced short palindromic repeats interference; crRNA: CRISPR RNA; dCas9: dead Cas9; GFP: green fluorescent protein; I1‐FFL:

type 1 incoherent feedforward loop; STAR: small transcription activating RNA; tracrRNA: trans‐activating crRNA; TXTL: transcription‐

translation system [Color figure can be viewed at wileyonlinelibrary.com]
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combined with mathematical models to parameterize and understand

RNA circuits (Agrawal et al., 2018; Hu et al., 2015; Hu, Takahashi,

Zhang, & Lucks, 2018). TXTL is ideal for prototyping genetic circuit

dynamics because it is quick and easy to use, requires minimal

cloning, and shows good agreement with in vivo data (Takahashi,

Hayes et al., 2015), and recently it was used to characterize CRISPR

nucleases and gRNAs (Marshall et al., 2018). Additionally, TXTL also

allows for experiments that would otherwise be difficult to perform

in vivo by giving direct control over component concentrations and

enabling circuit optimization and flexibility when designing experi-

ments to fit model parameters.

Here, we start by using TXTL to verify that the STAR and CRISPRi

present sufficiently distinct regulatory timescales. Then, we build

ODE models for the STAR and CRISPRi pathways in isolation, and we

perform systematic TXTL experiments to parameterize and validate

the models. We find that when the models are composed to build the

IFFL circuit, they predict the expected pulse generation. We conclude

with experiments showing that, when connected together to regulate

the same promoter, the candidate STAR‐CRISPRi pulse generator

circuit yields a pulse in target gene expression, and that the

composed models can quantitatively capture the pulse generator

behavior. Our results demonstrate that the combination of modeling

and experiments in a simplified TXTL environment is an effective

approach to prototyping biological dynamic circuits for control of

gene expression. Most importantly, our results indicate that RNA

regulators characterized in isolation can be combined in more

complex circuits without loss of performance when interconnected,

making them modular and composable components for dynamic

synthetic circuits.

2 | MATERIALS AND METHODS

2.1 | Plasmid construction and purification

Key sequences can be found in Supporting Information Table S2. All

the plasmids used in this study can be found in Supporting

Information Table S3. The STAR plasmid and control plasmid were

construct pJBL4971 and pJBL002, respectively, from Chappell et al.,

(2017). The green fluorescent protein (GFP) expression plasmid was

p70a‐GFP from Garamella et al. (2016) and the STAR‐target plasmid

was modified from this plasmid using inverse polymerase chain

reaction (iPCR). The plasmids expressing crRNA, tracrRNA, and the

scrambled crRNA were constructed using Gibson Assembly and iPCR

and sequence verified using sanger sequencing. Plasmids were

purified using a Qiagen QIAfilter Plasmid Midi Kit (Catalog number:

12243; Qiagen, Germantown, MD) followed by isopropanol pre-

cipitation and eluted with double distilled water.

2.2 | TXTL extract and buffer preparation

Cell extract and reaction buffer were prepared according to the

previous work (Garamella et al., 2016).

2.3 | TXTL experiments

TXTL buffer and extract tubes were thawed on ice for approximately

20min. Separate reaction tubes were prepared with combinations of

DNA representing a given circuit condition. Appropriate volumes of

DNA, buffer, and extract were calculated using a custom spreadsheet

developed by Sun et al. (2013) and modified to fit the experiments.

Buffer and extract were mixed together and then added to each tube

of DNA according to the previously published protocol. Each TXTL

reaction mixture (10 μl each) was transferred into a 384‐well plate

(Nunc 142761, Thermo Scientific), covered with a plate seal (Nunc

232701, Thermo Scientific), and placed on a Biotek Synergy H1m

plate reader (Biotek, Winooski, VT). We note that special care is

needed when pipetting to avoid air bubbles, which can interfere with

fluorescence measurements. Temperature was controlled at 29°C.

GFP fluorescence was measured (485 nm excitation, 520 emission)

every 5min. A calibration to enhanced GFP (EGFP) concentration

(μM) was performed using a standard curve of pure EGFP (STA‐201;

Cell Biolabs, San Diego, CA) to present measurement data in terms of

GFP concentration. Preincubation experiments were performed by

combining two types of extracts. One extract has dCas9 pre‐

expressed and the other does not. Each plasmid was incubated in

the appropriate extract and buffer for 2 hr before the preincubated

reactions were combined in equal parts and measurements began.

2.4 | Modeling

Equations in Figure 3 were solved with MATLAB_R2014b ode23s

solver to get the simulated GFP concentration for the error

calculation (Equation (2)) in data fitting. Candidate parameters were

generated with a uniform distribution within a bounded interval

(Supporting Information Table S1), using MATLAB random number

generation function rand. One trial of the Bayesian inference data

fitting (i.e., one initial guess, with 105,000 iterations) took about

three computational hours on a Macbook Pro with a 2 GHz Intel Core

i7 processor. Model in Figure 5 was also numerically solved with

MATLAB_R2014b ode23s function to get predictions for the

combined pulse generator. MATLAB scripts for the STAR, CRISPRi,

and Pulse generator models, as well as the corresponding para-

meterization are available on GitHub, downloadable at: https://

github.com/XunPSU/Westbrook_Tang‐et‐al‐SI‐Model‐Code.git

3 | RESULTS

3.1 | Preincubation experiments confirm the

expected STAR/CRISPRi timescale difference

We first sought to verify the timescale difference between STAR and

CRISPRi regulation expected from previous studies (Chappell et al.,

2015, 2017). To do this, we designed experiments that isolated the

kinetic processes of each mechanism. We transcribed RNA components

and allowed folding and complex formation with previously synthesized

dCas9 before assessing regulatory function, to isolate only the timescale

4 | WESTBROOK ET AL.



of the regulatory mechanism. When performing a typical TXTL

experiment, all DNA is added to the reaction at t = 0 and gene

expression is measured over the course of a few hours. Inherent to this

experimental design is a delay due to the transcription of RNA regulator

parts, which must first be transcribed before they can perform their

function. To isolate the timescale of the regulatory event, we incubated

a plasmid expressing each RNA regulatory part alone for 2 hr,

essentially allowing the TXTL reaction to synthesize RNA regulators

before being assessed for function. We then mixed preincubated

reactions with reporter DNA and characterized the response time of

the system. In this way, we removed the timescale needed for

regulatory RNA synthesis and instead focused the characterization

experiment on the relevant timescales of action for each regulator.

The STAR system only has one trans‐acting RNA, so we incubated

a plasmid expressing the STAR RNA or a plasmid expressing a

nonfunctional control RNA in TXTL for 2 hr. We then added DNA

encoding the p70a‐Target‐GFP plasmid to this reaction mixture at

t = 0 and began measuring fluorescence over time. We observed

detectable STAR activation of gene expression ~20min after the

addition of the GFP plasmid (Figure 2a) and STAR activation as

determined by the GFP production rate reached 70% of the steady

state after 35min, where the steady state was computed from an

exponential fit (Figure 2b) as described in Supporting Information

Note S1.

We anticipated that regulation of gene expression by the dCas9

complex would take significantly longer than the STAR activation,

given previous observations suggesting that gRNA loading onto

dCas9 takes on the order of ~1 hr in the presence of nonspecific

RNAs (Mekler, Minakhin, Semenova, Kuznedelov, & Severinov, 2016).

As the CRISPRi system requires a crRNA, tracrRNA, and dCas9, a

more sophisticated experiment was required to characterize the

regulatory timescale. Specifically, we sought to determine the

timescale for crRNA‐tracrRNA‐dCas9 complex assembly required

for the dCas9 complex to repress gene expression. To quantitatively

estimate this timescale, we incubated the DNA encoding each RNA

component in all combinations of alone, together, and in TXTL

already containing dCas9 for 2 hr (Supporting Information Figure S1)

and then combined them into a final reaction with DNA encoding the

Control

STAR

Control

Incubated separately

Incubated together

70% of steady state

35 minutesExponential fit

30% of steady state

55 minutesExponential fit

(a) (b)

(c) (d)

F IGURE 2 Preincubation experiments indicate that STAR activation is faster than dCas9‐based repression. (a) Functional time course

characterization of GFP expression when STAR is preincubated (blue) or a nonfunctional control is preincubated (red). The timescale of STAR

activation is on the order of 20min after reporter DNA is added to the reaction. (b) The production rate of GFP expression for the STAR

preincubation experiment. The GFP production rate reached 70% of max as determined by the exponential fit (dotted black line) at 35min. (c)

Functional time course characterization of the CRISPRi response when parts are incubated together (red) or separately (blue) in comparison to

unrepressed expression (green). The timescale of preincubated CRISPR repression is much faster than when the parts are incubated separately,

suggesting that the dCas9 loading time adds a significant delay to the system. The inset shows the two repressed states. Data for all

preincubation combinations of CRISPRi parts is shown in Supporting Information Figure S7. (d) The production rate of GFP expression for the

CRISPRi preincubation experiment. The GFP production rate reached 30% of its peak as determined by the exponential fit to the derivative

(dotted black line) at 55min. CRISPRi: clustered regularly interspaced short palindromic repeats interference; crRNA: CRISPR RNA; dCas9:

dead Cas9; EGFP: enhanced green fluorescent protein green fluorescent protein; STAR: small transcription activating RNA [Color figure can be

viewed at wileyonlinelibrary.com]

WESTBROOK ET AL. | 5



p70a‐GFP plasmid before began measurement. For clarity, we only

show two conditions in Figure 2c: all alone or all together in TXTL

containing dCas9. When incubated separately, we expect all

components to be present at high concentrations at the beginning

of the measurement but no CRISPRi repression complex would have

formed yet. The complex will begin forming when the measurement

starts. When incubated together, we expect the CRISPRi complex to

have already formed and be present at high concentrations.

Comparing these two conditions indicates the time it takes for the

crRNA‐tracrRNA‐dCas9 complex to form and then repress (Figure

2c). However, when incubated separately, the complex was slower to

repress gene expression, and did not achieve full gene repression

until 55min after addition of the DNA reporter construct (Figure 2d).

This large difference in response times reveals that the crRNA‐

tracrRNA‐dCas9 complex takes on the order of 55min to fully form

and perform its function in TXTL, which is similar to previous

research (Mekler et al., 2016).

Taken together, these results indicate that there is a timescale

difference between STAR activation (70% of the steady state production

rate seen after 35min) and CRISPRi repression (30% peak production

rate seen after 55min) due to the extra steps required for the crRNA‐

tracrRNA‐dCas9 complex assembly as opposed to the direct RNA‐RNA

interactions of the STAR mechanism. These timescale differences could

therefore be exploited to construct a simple network architecture that

produces a pulse of gene expression.

3.2 | STAR and CRISPRi model derivation

After verifying the timescale difference with our preincubation

experiments, we then sought to construct mathematical models for

the STAR and the CRISPRi systems respectively, to computationally

test our hypothesis and guide the design of the circuit before

conducting further experiments. We used ordinary differential

equations to model the rate‐of‐change of each molecular concentra-

tion, as a result of coupled kinetic reactions (Figure 3).

In the STAR system, messenger RNA (mRNA) is produced when

STAR binds to the 5′‐UTR, changing its structure allowing RNA

polymerase to continue transcription. Given the fact that (a) these

reactions only involve RNA‐RNA interactions, and (b) the purpose of

modeling in this study is to provide a qualitative representation of the

process, for simplicity, we modeled the STAR activation as a one‐step

reaction, where STAR binds to the free promoter Py directly to achieve

transcription activation, at rate βs. This is an approximation that coarse‐

grains the details of how the small RNA modifies target RNA structure to

activate transcription, and it is justified based on similar simplifying

assumptions made in previous work modeling RNA transcriptional

repressors (Hu et al., 2015, 2018). In parallel, we modeled CRISPR‐

Cas9 complex formation as a two‐step reaction process. As the first step

of this process, the tracrRNA and the crRNA bind to form the gRNA at

rate γ1, then the gRNA binds to dCas9 to form the active repressor

complex at rate γ2. Since there is no explicit investigation on the CRISPR

formation process, the two‐step reaction mechanism assumption here

F IGURE 3 Separate STAR and CRISPRi models with the corresponding topology. The STAR activation is modeled as a one‐step binding at

rate βs, to the free output promoter Py, to enable expression of GFP messenger RNA M. The CRISPRi repression is modeled as a two‐step

reaction, where formation of active repressor complex happens before it binds to the free output promoter Py to form the repressed Py
−, and

GFP is only expressed from the free Py promoter. For simplicity, the degradation rates of the RNA species are modeled but not shown in the

topology. In both models, mature GFP protein Gm is compared to experimental measurements. All the STAR, M, Mi, G, Gm, crRNA, tracrRNA,

gRNA, Complex, and Py
− are initiated with concentration 0 nM. The initial free Py plasmid was 0.5 nM, and dCas9 concentration was estimated

to be 35 nM based on previous experimental measurement. CRISPRi: clustered regularly interspaced short palindromic repeats interference;

crRNA: CRISPR RNA; dCas9: dead Cas9; GFP: green fluorescent protein green fluorescent protein; gRNA: guide RNA; STAR: small transcription

activating RNA; tracrRNA: trans‐activating crRNA [Color figure can be viewed at wileyonlinelibrary.com]
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was made based on the crystal structure of the tracrRNA, crRNA, and

dCas9 molecules that tracrRNA and crRNA should hybridize first before

dCas9 binding. Since dCas9 dissociation rates are extremely low with no

mismatches (Boyle et al., 2017; Wright et al., 2015), we assumed the

formation of the CRISPR‐Cas9 complex and its binding (at rate ω) to the

free promoter Py to form the repressed promoter Py
− to be irreversible.

While capturing the key reactions in the CRISPR‐Cas9 formation, the

model coarse‐grains the detailed dynamics of how crRNA, tracrRNA, and

dCas9 interact with each other and interferes transcription. To enable a

direct comparison between the STAR and CRISPRi regulation pathway,

we used a first‐order kinetic reaction to model the STAR activation,

instead of the Hill‐type function used in Hu et al. (2015).

In the STAR system, reporter p70a‐Target‐GFP mRNA (M) is only

produced when p70a‐Target‐GFP (Py) is activated (i.e., bound to

STAR at rate βs), at rate αm, while in the CRISPRi system, M is only

produced from the free promoter p70a‐GFP (for simplicity and for

later use in the combined model, this is also denoted by Py), at rate

αm. The GFP translational initiation, elongation, and maturation were

modeled following previous work (Hu et al., 2015) and the mature

GFP (Gm) is compared to the experimental measurement.

In addition to the transcriptional rates above, each RNA species

has a degradation rate and each protein species has a translation

rate. Specifically, αs, αcr, αtr,δs, δcr, δtr, and δg are the transcriptional

and degradation rates of STAR, crRNA, tracrRNA, and gRNA,

C
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CRISPR RNA Plasmids:
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Best fitting parameter value Parameter distribution

(a) (b)

(c)

F IGURE 4 Model parameterization with separate STAR and CRISPRi experiments. (a) Comparison of best‐fitted simulation to the STAR

experiments for three conditions: high activation with 8 nM of STAR plasmid (green plots, 8 nM STAR), moderate activation with 4 nM of STAR

plasmid (blue plots, 4 nM STAR), and no activation with no STAR plasmid (red plots, STAR OFF). (b) Comparison of the best‐fitted simulation to

the CRISPRi parameterization experiments for three conditions: no repression with no crRNA or tracrRNA (red plots, 0 nM CRISPR RNA),

moderate repression with 0.1 nM crRNA and tracrRNA plasmid (blue plots, 0.1 nM CRISPRi RNA), and complete repression with 0.25 nM crRNA

and tracrRNA plasmid (green plots, 0.25 nM CRISPRi RNA). (c) Histogram of parameters obtained from 1,000 samples that gave the lowest

fitting error within the pool of 10 × 105000 and 10 × 210000 fitting rounds for the STAR and CRISPRi system, respectively. Gray bar indicates

the location of the parameter value that gave the best fitting. Note, all the kinetic parameters are scaled to be dimensionless before taking their

log values in the histogram plots. CRISPRi: clustered regularly interspaced short palindromic repeats interference; crRNA: CRISPR RNA; EGFP:

enhanced green fluorescent protein green fluorescent protein; STAR: small transcription activating RNA; tracrRNA: trans‐activating crRNA

[Color figure can be viewed at wileyonlinelibrary.com]
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respectively; δm is the degradation rate of GFP mRNA, M; Ki is the

translation initiation rate, Ke is the translation elongation rate, and

αgm is the GFP maturation rate. Py
tot is the total amount of reporter

promoters, Mi is the translationally initialized mRNA, and G is the

immature GFP protein. We note that no protein degradation rate is

included because proteins do not degrade in TXTL unless degrada-

tion tags are included, (Garamella et al., 2016) and there is no

translation rate for dCas9 because extracts were made from E. coli

cells expressing dCas9 (Marshall et al., 2018).

3.3 | Model parameterization

With the separate STAR and CRISPRi models, our next step was to

extract suitable kinetic parameters to construct a combined model

for reliable predictions. To achieve this, we adopted a Bayesian

inference parameterization approach (Brown & Sethna, 2003;

Subsoontorn, Kim, & Winfree, 2012) to fit parameters for STARs

and CRISPRi separately. A brief summary of this Monte Carlo

Bayesian inference approach is given in Supporting Information Note

S2; please refer to Subsoontorn et al. (2012), for a complete

derivation and discussion of this method. In this study, we used

three sets of the STAR activation experiments (full experimental data

shown in Supporting Information Figure S2) to train our model for

the three STAR‐related kinetic parameters: αs, δs, and βs. We also

used three sets of the CRISPRi repression experiments (full

experimental data is shown in Supporting Information Figure S3) to

train our model for the eight CRISPRi‐related kinetic parameters: αcr,

αtr, δcr, δtr, δg, γ1, γ2, and ω. As crRNA and tracrRNA were transcribed

from the same promoter in our experiments, we assumed that they

share the same transcription rate, and we set αcr = αtr in the fitting.

The five reporter GFP‐related parameters (αm, δm, Ki, Ke, and αmg)

were also fitted for both STAR and CRISPRi.

For both STAR and CRISPRi experiments, we initiated our fitting with

10 different initial guesses that were evenly spaced in the admissible

parameter intervals that were inferred from previous publications

(Supporting Information Table S1; Hu et al., 2015). To fit the eight

parameters in the STAR model, we conducted 105,000 iterations of

parameter updates to seek convergence, and to fit the 12 parameters in

the CRISPRi model, we conducted 210,000 iterations. The probability of

accepting parameter set i from parameter set j was set according to the

following (Subsoontorn et al., 2012):

P i j e E E Eif 0

1, otherwise

,i j
,

Ei Ej

T( ← ){ Δ = − ≥−
−

(1)

STAR DNA Plasmid

STAR

STAR 

GFP

Target DNA Plasmid

crRNA DNA Plasmid

crRNA

crRNA

αsPs

βs

Py

Pcr

tracrRNA DNA 

Plasmid

tracrRNA

tracrRNA

Ptr

dCas9

αtr

αcr

γ 1

γ 2

ω

Ki

M i

Ke

αm

M

Ke

αgm

G Gm

Complex

gRNA

(a) (b)

F IGURE 5 Topology of the pulse generator model. The separate STAR and CRISPRi model are combined by introducing a competition for Py

binding through the repressor formation in dPy−/dt and the activation in dM/dt equations. Once CRISPRi repressor complex binds to Py to form

repressed state Py
−, it can no longer be activated for expression. Py and Py

− follows mass balance with a total initial concentration of Py
tot. For

simplicity, the degradation rates of the RNA species are modeled but not shown in the topology. All the STAR, M, Mi, G, Gm, crRNA, tracrRNA,

gRNA, Complex, and Py
− are initiated with concentration 0 nM. The initial free Py plasmid was 0.5 nM, and the dCas9 concentration was

estimated to be 35 nM based on previous experimental measurement. CRISPRi: clustered regularly interspaced short palindromic repeats

interference; crRNA: CRISPR RNA; gRNA: guide RNA; STAR: small transcription activating RNA; tracrRNA: trans‐activating crRNA [Color figure

can be viewed at wileyonlinelibrary.com]
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with T = 0.125 (=2σ2), and σ is the estimated measurement error. The

cost function E is defined as the cumulated point‐wise squared

prediction‐measurement error for each experiment cycle:

E Prediction t Measurement t .

t t

t

2

f

0

∑= [ ( ) − ( )]
=

(2)

The parameter set that gave the lowest cost function E across all

the fittings was deemed as the best‐fitted parameter set. The

corresponding simulations are plotted in Figure 4a,b against the

experimental measurement. The comparisons between predictions

and data demonstrate that models trained with the Bayesian

inference approach were able to reproduce the dynamics of the

STAR and the CRISPRi system under various conditions. To under-

stand the distribution of each parameter, we ranked all the sampled

parameter sets (i.e., 10 × 105,000 and 210,000 sets of parameters for

the STAR and CRISPRi fitting, respectively) with respect to the

corresponding value of the cost function E. Figure 4c shows the

parameter distribution of the first 1,000 sets of parameters that gave

the lowest fitting error E. Note that the five GFP‐related parameters

shown in Figure 4c were fitted from the STAR activation experi-

ments, for demonstration. The values of the best fitting parameters

are given in Supporting Information Table S1.

Interestingly, while some CRISPRi‐related parameters have a

relatively wide distribution, we see limited variation in the repressor

formation‐related parameters such as ω for the plotted 1,000 fitted

parameter values. This observation suggests that the repressor

formation kinetics dominate the accuracy of the CRISPRi regulation

process. On the other hand, all three STAR‐related parameters

displayed a relatively wide distribution, which suggests the existence

of multiple optimal solutions for the fitting. This might be due to our

simplification of the STAR activation mechanism and/or limited

experimental conditions (e.g., initial concentrations), such that a wide

range of parameter values can fit well the model. Note that fewer

reaction steps and experimental conditions lead to fewer constraints

for the parameterization. The corresponding parameter distribution

of the 1,000 sets that gave the lowest fitting error, and the

parameter pair‐wise correlation are given in Supporting Information

Figures S4 and S5. Detailed sensitivity analysis is included in

Supporting Information Figure S6 with respect to: (a) sensitivity

analysis in terms of fitting error, subjects to a variation of ±5% in the

nominal values for all three models; (b, c) eigenvalue and projection in

the first two components from principal component analysis, with the

same 1,000 sets of parameters. All the results did not indicate strong

correlations among the parameters.

3.4 | Pulse generator modeling and experimental

verification

After parameterizing the separate STAR and CRISPRi models, we

then combined them to build the pulse generator model by

introducing a competition for Py promoter binding between STAR

and CRISPRi (Figure 5). In the combined pulse generator model, a

free promoter Py can either bind to CRISPRi to form a repressed

state or to STAR to form an activated state for gene expression. Once

Py is bound to the CRISPRi complex, it becomes unavailable for STAR

activation. To simulate the model, all output promoter copies were

initiated in the free state (unbound), with a fixed concentration to

mimic conditions used in the CRISPRi characterization experiments.

We then used the combined model to test if a pulse could be

generated in the production rate of the target gene. Instead of using

one best‐fitted parameter set, we decided to combine the set of best

fit from each of the 10 Bayesian fittings for both the STAR and the

CRISPRi regulator experiments, obtaining 100 sets of parameters (10

STAR × 10 CRISPRi) to generate predictions of the pulse generator

behavior. This is because a mismatch between our model prediction

and the pulse generator behavior could be caused by the fact that

multiple optimal parameters exist for each individual regulator model

(Figure 4), so the combination of the very best fits might not give the

most accurate prediction for the interconnected circuit. The

procedure to generate combinations of best fits is summarized in

Figure 6a. Prediction with the best STAR and CRISPRi separately

fitted parameters demonstrated a plateau in the GFP concentration

(dashed black plot in Figure 6b), and a pulse in the production rate

(dashed black plot in Figure 6c), and indeed all 100 parameter

combinations suggested a pulse in the production rate (Supporting

Information Figure S7). Given these observations, we expect the

integrated pulse generator to function robustly and also to produce a

pulse in experiments.

We then performed a TXTL experiment that combined both the

STAR and the CRISPRi systems. As in the separate CRISPRi

experiment, we added 0.25 nM crRNA, 0.25 nM tracrRNA, and

0.5 nM p70a‐Target‐GFP. Since the STAR ON expression level is

significantly lower than that of the CRISPRi system (Figure 4), we

doubled the amount of STAR plasmid used in the separate STAR

experiment from 8 nM to 16 nM in the combined system, to mitigate

this difference. After the addition of all DNAs, we immediately began

measuring fluorescent GFP expression (Figure 6d). As predicted, the

experiments also demonstrated a plateau in GFP expression level

(Figure 6d, purple), and a pulse in the production rate (Figure 6e,

purple). We only see a pulse in the production rate because TXTL has

negligible protein degradation (Sun et al., 2013). Only the full pulse

generator shows a pulse. Conditions missing either STAR or crRNA

show no activation (Figure 6d,e, green and red) or constant activation

(Figure 6d,e, blue) indicating that CRISPR regulation, STAR regula-

tion, and their timescale mismatch are necessary for the pulse to

occur. If performed in vivo, we would expect a pulse in concentration

rather than production rate. We then quantified the prediction

accuracy by defining the prediction error in the same way as the cost

function in (1) to study the possible changes in the model parameters

caused by the combination. The log‐based prediction errors are

summarized in the heat map in Figure 6f.

One interesting observation is that the best prediction (solid

black plot in Figure 6b,c) was not achieved by the set of the best‐

fitted parameters (dashed black plot). The best‐fitted parameter set

predicted a higher steady‐state concentration in GFP and a taller
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F IGURE 6 Pulse model prediction and experimental verification. (a) Procedure for parameterization and prediction: each of the individual

STAR and CRISPRi models were trained with experimental measurements to fit 10 sets of best fitting parameters. These parameters were then

combined into 100 sets that were used to predict the dynamics of the pulse model. The predictions were then compared to experimental

measurement and quantified by the squared error between the prediction and the observed trajectories. (b) GFP concentration reached steady

state in both the simulation (black and green) and experiments (red) within 240min, while the best‐fitted parameter set predicted a higher

steady state concentration level (dashed black), and the best prediction from the separately fitted parameters (solid black) gave better accuracy

to the best fitting of the pulse model (green). (c) GFP production rate demonstrated a pulse which peaked at around 40min and dropped when

the repression kicked in and RNA degradation took over, in both the simulations (black and green) and the experiments (red). (d) Functional

time course characterization of pulse generator with 0.5 nM of the p70a‐STAR Target‐GFP plasmid, 16 nM of STAR plasmid (for the +STAR

conditions), and 0.25 nM of crRNA and tracrRNA plasmids (for the +crRNA conditions). The pulse generator activates expression and plateaus

quickly. GFP does not degrade in TXTL so the pulse is seen in the production rate rather than GFP concentration. The pulse generator (+STAR

+crRNA, purple), negative control (−STAR −crRNA, red), and CRISPRi control (−STAR +crRNA, green) conditions are normalized by the +STAR

+crRNA and the STAR control (+STAR −crRNA, blue) is normalized by its own maximum. The colored regions (top) indicate the standard

deviation of nine replicates. (e) Functional time course characterization of pulse generator production rates. A pulse is generated in production

rate when both STAR and crRNA are present (+STAR +crRNA, purple). The production rates shown are smoothed averages of nine replicates.

Normalization and standard deviations are done as in part (e). (f) Presentation of the prediction accuracy with the 100 sets of separately fitted

parameters indicates the best separately fitted parameter set did not give the best prediction in the combined pulse model. Red dot indicates

the location of the best separately fitted parameter sets and the yellow dot indicates the location of the parameter set for the best prediction.

Note that they are in the same row (i.e., same STAR fitting trial) but different columns (i.e., different CRISPR fitting trial). Best separate fitting:

prediction with parameters that best fit the STAR and CRISPR system individually; best prediction: the best of the 100 predictions with

individually fitted parameters; best pulse fitting: best out of the 10 fittings to the pulse experiments. CRISPRi: clustered regularly interspaced

short palindromic repeats interference; crRNA: CRISPR RNA; gRNA: guide RNA; STAR: small transcription activating RNA [Color figure can be

viewed at wileyonlinelibrary.com]
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pulse in the production rate, as compared with the averaged

experimental measurement (solid red plot in Figure 6b,c) and the

best prediction. Indeed, the best fitted and the best prediction

parameters were from the same STAR (same row in Figure 6f) but a

different CRISPRi fitting trial (different column in Figure 6f). The

values of the best prediction parameters are given in Supporting

Information Table S1. This observation suggested that the coupling

may affect the CRISPRi dynamics, such that the set of parameters fit

best the separate experiments but underpredicted the repressor

formation rate, which lead to a higher predicted GFP expression

level. A detailed parameter‐to‐parameter comparison between the

best prediction and the best‐fitted parameters is given in Supporting

Information Figure S8, to visualize the relative location of each

parameter value.

We next asked how well we can fit the STAR/CRISPRi combined

model to the experimental measurements, and how that compares to

the best prediction with the separately fitted parameters. Again, to

seek convergence we conducted 10 Bayesian fittings from different

initial guesses, with 210,000 iterations for each fitting (same as in the

CRISPRi fitting). The fitting that yielded the lowest fitting error is

plotted in Figure 6b,c in green. Surprisingly, the best prediction with

the separately fitted parameters slightly outperformed the best fits

on the combined model. This could be due to the fact that in the

combined model more parameters have to be simultaneously fitted

relative to the individual component models, leading the combined

model to require a larger number of samplings (i.e., initial guesses

and/or iterations) to reach an equally good fit. Indeed, the fitting

error comparison in Supporting Information Figure S9 suggests that

to fit 12 parameters in the CRISPRi model, even more iterations

might be needed. Additionally, the best prediction from the

separately fitted parameters is similar to the best fits out of 100

fittings, since it is the best prediction from a 10 × 10 best‐fitted

parameter sets. To improve the fitting on the combined model, one

can use more initial guesses and increase the number of iterations.

Supporting Information Figure S9 summarizes the detailed compar-

ison of the accuracy and the error convergence for the STAR,

CRISPRi, and pulse generator model fitting, respectively.

4 | DISCUSSION

In this study we have demonstrated a RNA‐based pulse generator in

TXTL that harnesses the difference in speed between STAR and

CRISPRi regulation. This STAR‐CRISPRi hybrid construct is able to

produce a pulse of gene expression. STAR activation involves a single,

fast, cotranscriptional RNA‐RNA interaction while CRISPRi requires

the slow formation of an RNA‐protein complex leading to a delay

before CRISPRi repression sets in. Combined, these mechanisms

produce pulse of gene expression caused by the transcription of a

few RNA molecules.

There have been a number of synthetic I1‐FFLs built using

protein regulators (Barone et al., 2017; Cheng, Hirning, Josić, &

Bennett, 2017; Entus et al., 2007). Recently, we built a RNA‐based I1‐

FFL that uses N‐acyl homoserine lactone to activate expression of a

STAR RNA that activates expression of monomeric red fluorescent

protein (mRFP) as well as a gRNA and dCas9 that repress mRFP

(Chappell et al., 2017). This design relies on an additional RNA

cleavage strategy, cascading RNA regulatory events, and slow dCas9

production. Here, we constructed a simpler network that implements

the pulse of gene expression of an I1‐FFL but faster and more

effectively with a simpler network design.

As synthetic networks grow in complexity, models will be vital for

predicting their behavior and understanding dynamics, as they

provide faster assessments of the network as compared with

experiments. Here, we constructed and parameterized a coarse‐

grained mechanistic model and used it to predict the dynamics of the

pulse generator network. With the simulation results, we observed

possible modularity of the STAR regulator when combined with other

structures to form more complicated networks, while the perfor-

mance of the CRISPRi regulation might be affected, as indicated by

the change in the parameter values. However, this observed change

in the CRISPRi regulation might be due to several reasons: first, given

the limited amount of training data, it could be possible that the

CRISPRi parameters were over‐fitted on the training data thus giving

a nonideal prediction in the new condition (combined system).

Indeed, the complexity, parameterization methods, and experimental

noise could all contribute to the accuracy of the model parameter-

ization. Second, unmodeled (and undesired) coupling of the two

regulatory pathways could affect the dynamics; for example, indirect

competition for the transcription machinery could reduce transcrip-

tion rates in a nonhomogeneous manner in the two circuits, altering

their regulation timescale. Third, the mechanism of the CRISPRi

repressor formation might be oversimplified such that intermediate

reaction steps were overlooked. For further investigations, we

suggest a richer data set under various conditions for model

parameterization, and a refined model to encompass more detailed

reactions in the system.

Model parameterization can be challenging, especially when

obtaining large amount of experimental measurements under various

conditions is costly and a stochastic parameterization method is used,

which would normally require convergence. The results in this study

suggest that, instead of fitting all the parameters simultaneously,

fitting part of a combined network separately could also lead to

reliable predictions of an integrated structure, especially when the

modularity of each component can be maintained. Because fitting

parameters of individual modules for use in integrated structures

provides a more computationally tractable alternative to compre-

hensive parameter fitting, we expect this approach to become

predominant as synthetic molecular systems become more and more

complex.

In summary, we demonstrate a STAR‐CRISPRi hybrid pulse

generator both with simulation and in vitro TXTL experiments; the

circuit mimics the architecture and performance of an I1‐FFL. We

also demonstrated how mathematical modeling can be used to guide

and assess the design of biological constructs. We found that

parameters fitted from separate models can also accurately predict
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the performance of the combined model/construct. We further

discussed the importance of sample data, and optimization settings in

improving the parameterization. We anticipate the results in this

study to provide guideline for future work in the modeling,

parameterization, and construction of biological parts made of both

STAR and CRISPRi regulators.
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Table S1: Parameter values used in Figure 3 and 5. The best fitting EGFP reporter parameters from both 

STAR and CRISPRi pre-incubation experiments are listed in order of STAR/CRISPRi. 

Parameters Varying Interval Best Fitting Values Best Prediction Values Literature Reference 

as 10-2 - 10 s-1 2.038 s-1 2.038 s-1 2 s-1  

(Hu et al., 2015) 

ds 10-5  - 10-1 s-1 0.0915 s-1 0.0915 s-1 0.00002 s-1~0.1 t-1  

(Schmid et al., 2018) 

bs 103 - 107 nM-1s-1 310969 nM-1s-1 310969 nM-1s-1 N/A 

acr/tr 10-2 – 10 s-1 0.739 s-1 0.03 s-1 2 s-1  

(Hu et al., 2015) 

dcr 10-5  - 10-1 s-1 0.0615 s-1 0.0614 s-1 0.00002 s-1~0.1 t-1  

(Schmid et al., 2018) 

dtr 10-5  - 10-1 s-1 0.030 s-1 0.073 s-1 0.00002 s-1~0.1 t-1  

(Schmid et al., 2018) 

dg 10-5  - 10-1 s-1 0.085 s-1 0.0176 s-1 0.00002 s-1~0.1 t-1  

(Schmid et al., 2018) 

g1 103 - 107 nM-1s-1 7.38x106 nM-1s-1 8.69x106 nM-1s-1 N/A 

g2 103 - 107 nM-1s-1 6.56x106 nM-1s-1 3.68x106 nM-1s-1 N/A 

w 103 - 107 nM-1s-1 3.1x104 nM-1s-1 7.17x106 nM-1s-1 N/A 

am  10-1 – 100 s-1 0.1/50.65 s-1 0.1 s-1 2 s-1  

(Hu et al., 2015) 

dm 10-5  - 10-1 s-1 4.01x10-4/0.094 s-1 4.01x10-4 s-1 0.00002 s-1~0.1 t-1  

(Schmid et al., 2018) 

Ki 10-4  - 10-2 s-1 0.0012/9.019x10-4 s-1 0.0012 s-1 ~0.0023 s-1 

(Hu et al., 2015) 

Ke 10-4  - 10-2 s-1 0.009/4.168x10-4 s-1 0.009 s-1 ~0.0013 s-1 

(Hu et al., 2015) 

agm 10-3  - 10-1 s-1 0.092/0.015 s-1  0.092 s-1 ~0.05 s-1 

(Hu et al., 2015) 
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Table S2: Important DNA sequences 

Name Sequence 

J23119 TTGACAGCTAGCTCAGTCCTAGGTATAATACTAGT 

p70a TGAGCTAACACCGTGCGTGTTGACAATTTTACCTCTGGCGGTGATAATGGTTGC

A 

STAR 5 TGAACTGTATACATTCCCCGCAGGATAGGAATTGAAGATGAAACGATGAGACT

TGGGACGAGGATCT 

STAR 5 

Target 

TCGTCCCAAGTCTCATCGTTTCATCTTCAATTCCTATCCTGCGGGGAATGTATAC

AGTTCATGTATATATTCCCCGCTTTTTTTTTGGATCT 

crRNA GGTAAAATTGTCAACACGCAGTTTTAGAGCTATGCTGTTTTGAATGGTCCCAAA

AC 

Scrambled 

crRNA 

AAGCAGATTACGTTCAAGCAGTTTTAGAGCTATGCTGTTTTGAATGGTCCCAAA

AC 

tracrRNA ATCTTGTTGGAACCATTCAAAACAGCATAGCAAGTTAAAATAAGGCTAGTCCG

TTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTTG 

eGFP 

(Ribosome 

binding site 

(RBS) -GFP) 

AGAAGGAGATATACCATGGAGCTTTTCACTGGCGTTGTTCCCATCCTGGTCGAG

CTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGG

GCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAG

CTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGC

TTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATG

CCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTA

CAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCG

AGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTG

GAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAA

CGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGC

AGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTG

CTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAA

CGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCT

AACTCGAG 
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TrrnB GAAGCTTGGGCCCGAACAAAAACTCATCTCAGAAGAGGATCTGAATAGCGCCG

TCGACCATCATCATCATCATCATTGAGTTTAAACGGTCTCCAGCTTGGCTGTTTT

GGCGGATGAGAGAAGATTTTCAGCCTGATACAGATTAAATCAGAACGCAGAAG

CGGTCTGATAAAACAGAATTTGCCTGGCGGCAGTAGCGCGGTGGTCCCACCTG

ACCCCATGCCGAACTCAGAAGTGAAACGCCGTAGCGCCGATGGTAGTGTGGGG

TCTCCCCATGCGAGAGTAGGGAACTGCCAGGCATCAAATAAAACGAAAGGCTC

AGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACT 

T500 CAAAGCCCGCCGAAAGGCGGGCTTTT 

 

 

 

Table S3: Plasmids used in this study. Sequences in the plasmid architecture can be found in Table S2. 

 

  

Plasmid # Plasmid architecture Name 

 

Figure 

 

Reference 

JBL002 J23119 – TrrnB – ColE1 origin – AmpR No STAR control 2-6, S2-5, S7, S10 A 

70a-GFP p70a – GFP – ColE1 origin - AmpR P70a-GFP 

2 Garamella et 

al. 2016 

AMW019 

p70a – STAR 5 Target – GFP – ColE1 origin - 

AmpR 

P70a-STAR Target-

GFP 

2, 4, 5, S4, S5, S7 This paper 

JBL4971 J23119 – STAR 5 – t500 – ColE1 origin - AmpR STAR 5 

2, 4, S5, S10 Chappell et 

al. 2017 

CSM257 J23119 – crRNA – t500 – CamR – ColE1 crRNA 4 This paper 

CSM258 

J23119 – scrambled crRNA – t500 – CamR – 

ColE1 crRNA control 

4, 5, S7 This paper 

CSM275 J23119 – tracrRNA – t500 – CamR – ColE1 tracrRNA 4 This paper 
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Supplementary Figure S1: Complete data for the CRISPRi pre-incubation experiment.  Functional time 

course characterization of the CRISPRi response when parts are incubated together or alone in various 

combinations for 2 hours before measurements. When no crRNA or trRNA is present, GFP expression is ON 

(green). When all the parts are incubated together, GFP is quickly repressed (red). GFP repression is delayed 

when all parts are incubated separately (blue). Incubating trRNA alone, but dCas9 and crRNA together shows 

similar delays in repression (yellow). When crRNA (orange) or dCas9 (purple) is incubated alone (but dCas9 

and trRNA together or crRNA and trRNA together, respectively) the delay is less dramatic. The colored 

region indicates the standard deviation of nine replicates. The same data is shown in both plots except the 

p70a-GFP has been removed from the bottom plot so that the other conditions could be seen clearly.  
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Supplementary Figure S2: Complete data for the STAR parameterization experiment.  Functional time 

course characterization of GFP expression when different concentrations of STAR plasmid is added to the 

TXTL reaction with 0.5nM of the p70a-STAR Target-GFP plasmid at the start of the measurement. The 

colored region indicates the standard deviation of nine replicates.  

 

 

Supplementary Figure S3: Complete data for the CRISPRi parameterization experiment.  Functional time 

course characterization of GFP expression when different concentrations of crRNA and trRNA plasmids are 

added to the dCas9 TXTL reaction with 0.5nM of the p70a-GFP plasmid at the start of the measurement. The 

colored region indicates the standard deviation of nine replicates. 
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Supplementary Figure S4: Distribution and parameter correlation comparison of the 1000 fitted STAR 

parameters that gave the lowest fitting error to the STAR experiments. While no strong correlations were 

observed among the parameters, some parameters have a wider distribution such as βs and Ki, some others 

have narrower distributions such as αm. 
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Supplementary Figure S5: Distribution and parameter correlation of the 1000 fitted CRISPRi parameters 

that gave the lowest fitting error to the CRISPRi experiments. While minimal to no correlations were 

observed among the parameters, some parameters have a wider distribution such as γ1, some others have 

narrower distributions such as ω. 
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Supplementary Figure S6: Parameter sensitivity analysis of CRISPR, STAR, and Pulse generator. (A) 

Model fitting error subjects to +5% (hollow circles) and -5% (solid circles) of nominal parameter values 

(i.e. values gave the best fitting). Error is defined as in Eqn. 2 and is normalized over the fitting error with 

nominal parameters. While all three models show sensitivity over some parameters (e.g. EGFP production 

and maturation parameters), the CRISPR model shows the highest sensitivity to parameter values overall, 

while the combined pulse generator shows the lowest fitting error in all. This is because the pulse nominal 

fitting error is the highest, indicating non-convergence in the original fitting, and the CRISPR has a 

moderate nominal fitting error, since the original fitting is still converging. (B) Eigenvalue of principal 

component analysis of the 1000 sets of parameters that gave the lowest fitting error for CRISPR, STAR, 

and Pulse generator. All the eigenvalue plots indicate low correlation among each parameter, which is 

consistent with observations in Supplementary Figure S4 and 5. (C) Parameter projections in the first two 

components indicate the contribution of each parameter to the first principal components.    

 

 

  

Supplementary Figure S7: Predictions of all the 100 combinations of STAR and CRISPRi separately fitted 

parameter sets demonstrate pulse in the combined model. Solid blue plots are individual predictions, dashed 

black plot is the prediction with the best separately fitted parameters, the solid black plot is the best prediction 

out of this 100 combinations, and the solid red plot is the averaged experimental measurement. 
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Supplementary Figure S8: Comparison in terms of parameter values in the best fitted and prediction 

parameter sets, demonstrating that a faster CRISPRi repressor formation rate was needed in the pulse circuit 

model for better prediction accuracy. 

 

Supplementary Figure S9: Best fitting from each of the 10 Bayesian inference for STAR (a), CRISPRi (b), 

and pulse generator model (c). Fitting error demonstrates convergence comparison in log scale for STAR (e), 

CRISPRi (f), and pulse generator (h). There are 8, 12, and 15 parameters fitted in the STAR, CRISPRi, and 

pulse generator model respectively. Due to the increased number of parameters, even with a larger number 

of iterations it was challenging to obtain convergence for the CRISPRi and pulse model fitting, with worse 

fitting performance with respect to to STAR. This indicates that our fitting approach becomes more 

challenging and computationally expensive as the number of fitted parameters increases. 

 

Prediction param = fitting param
Prediction param ≠ fitting param
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Supplementary Note S1: Slope computation and fitting for Fig.2 in the main manuscript. 

Data were first smoothed by employing a 2-point moving average filter with MATLAB. The slope of each 

kinetic data set was computed using the MATLAB function diff. The slope was then averaged over all the 

available samples. The averaged slope was fitted to the following functions, using MATLAB’s lsqcurvefit 

routine: 

a) STAR system: 

 

Fitted values for the parameters are: d1 = 0.3*10-3 µm/min, d2 = 25 min.  

b) CRISPR system: 

 
Fitted values for the parameters are: k1 = -0.0218 µm/min, k2 = 14.24 min, k3 = 0.0224 µm/min, k4 = 18.27 

min  

We chose 70% and 30% of the steady state value to determine the timescale of activation and repression 

respectively. For an exponential process, 63% of the steady state is achieved in a time equal to the time 

constant of the system. We rounded this number to 70% for the STAR (activation) process. For the 

CRISPR (repression) system it is more challenging to choose a cutoff because both initial and final slopes 

are zero. we assumed that the peak of the slope curve corresponds to the maximum achievable, and for 

consistency with the choice of the STAR cutoff we looked at a 70% decrease from the peak. 

 

Supplementary Note S2: Bayesian inference Monte Carlo approach for parameterization. 

The Bayesian inference Monte Carlo approach used in this study was adopted from Ref. Hu et al., 2015. Here 

we briefly summarize the proof of how the Metropolis Monte Carlo based approach can be used for Bayesian 

inference methods, please refer to the supplementary information of Ref. Subsoontorn et al., 2012 for the 

detailed discussion.  

First, let (𝑃(𝐷|𝑀(𝜃')) be the probability that the proposed model with parameter vector 𝜃' will generate the 

observed data 𝐷 = {𝑌+} with initial conditions I1,I2,…,Ip. Then let the repeatability variance modeled as 

s(t) = d1(1� e�
t
d2 )
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Gaussian random measurement error 𝜎, for each experimental measurement 𝑌+, then we have 

𝑃 .𝑌+/𝑀0𝜃'12 = 	
4

√678
exp	(− (=0>?,AB1CD?)F

68F
).  

Further assuming each experiment as independent, and convert the product into sum, it can be shown that: 

 𝑃 .𝐷/𝑀0𝜃'12 = 	∏ 4
√678

exp H− 0=0>?,AB1CD?1
F

68F
I 	∝ exp	(−∑ 0=0>?,AB1CD?1

F
?

68F
)+ 	∝ exp	(− L

68F
)	  

where E is the cost function used in our optimization. The above equation is then a Boltzmann distribution 

with energy E and temperature 𝑇 = 2𝜎6.  

Then one can estimate the conditional probability 𝑃(𝑀0𝜃'1|𝐷)	of the model with parameters 𝜃' given 

experiment measurement D, using Bayesian inference with a uniform a priori distribution for model 

parameters as: 

𝑃0𝑀0𝜃'1O𝐷1 = 	
𝑃 .𝑀0𝜃'12 × 𝑃 .𝐷/𝑀0𝜃'12

𝑃(𝐷) 	∝ 𝑃(𝐷|𝑀0𝜃'1) ∝ exp	(−
𝐸
2𝜎6) 

thus allowing us to use Metropolis criteria to generate parameter sets that is consistent with the Boltzmann 

distribution for the parameterization.  
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