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ABSTRACT Inspired by the motility of the bacteria Listeria monocytogenes, we have experimentally studied the growth of
an actin gel around spherical beads grafted with ActA, a protein known to be the promoter of bacteria movement. On
ActA-grafted beads F-actin is formed in a spherical manner, whereas on the bacteria a “comet-like” tail of F-actin is produced.
We show experimentally that the stationary thickness of the gel depends on the radius of the beads. Moreover, the actin gel
is not formed if the ActA surface density is too low. To interpret our results, we propose a theoretical model to explain how
the mechanical stress (due to spherical geometry) limits the growth of the actin gel. Our model also takes into account
treadmilling of actin. We deduce from our work that the force exerted by the actin gel on the bacteria is of the order of 10 pN.
Finally, we estimate from our theoretical model possible conditions for developing actin comet tails.

INTRODUCTION

Actin polymerization plays a crucial role in cell motility.
One of the most widely studied examples (Lackie, 1986;
Stossel, 1993) is the crawling movement of eukaryotic cells
by protrusion of actin-rich lamellipodia in front of the cell
that tract the cell forward when the microfilament network
reorganizes. The force induced by the growth of actin fila-
ments is sufficient to stress and deform cell membranes. A
similar system of force generation is also responsible for the
movement ofListeria monocytogenesonce in the cytoplasm
of infected cells. By virtue of producing an F-actin filled-
tail, Listeria constitute a simple model for studying move-
ment induced by actin polymerization. The tail is made of
microfilaments cross-linked together (Cossart, 1995) and
oriented with their plus end (favored for polymerization)
toward the bacterium. The protein responsible for F-actin
nucleation has been identified (Kocks et al., 1992; Domann
et al., 1992) as a transmembrane protein of 69 kDa called
ActA. The mechanism of actin filament formation from
Listeria has been studied in cell-free extracts ofXenopus
eggs or human cell extracts, and shows that the recruitment
of eukaryotic proteins is necessary for the motility ofLis-
teria (Lasa and Cossart, 1996; Welch et al., 1997). Our goal
was to experimentally study the role of topology on actin
polymerization by conceiving a system that resembles that
of Listeria but permits testing various parameters such as
geometry or density of actin nucleators. We prepared and
purified a recombinant ActA and grafted it covalently onto
beads of different diameters. When added to cell-free ex-
tracts prepared from HeLa cells, the beads acquired an
F-actin gel structure. The thickness of this actin gel around

the beads was found to be dependent in a reproducible
manner upon the diameter of the bead. Indeed, the gel is
built by addition of G-actin at the surface of the bead, which
necessarily creates a stress in a spherical geometry. This
stress is sufficient to limit the growth of the actin gel. In a
first approximation (i.e., if we neglect treadmilling), one can
state that the polymerization process stops when the chem-
ical energy gain in the polymerization (Ex) is balanced by
the elastic energy cost for adding a new monomer (Eel). If
we designatej the average distance between nucleating
proteins (nucleators) on the bead (the density of nucleators
is then 1/j2), Dm the chemical energy released in the poly-
merization process,r i the radius of the bead, thenEx 5 1/j2

Dm 3 4pr i
2. The work of the force for adding a monomer is

srra per unit area, wheresrr is the radial component of the
stress anda is the size of a G-actin monomer, then the
elastic energy can be expressed asEel 5 srra 3 4pr i

2. From
the expression ofsrr derived in this paper (Eq. 17), we
deduceEel > C(e/r i)

2 a 3 4pr i
2, whereC is the elasticity

modulus of the actin gel ande is its thickness. Writing
Eel 5 Ex givese 5 r i

=Dm/Caj2, which expresses thate is
an increasing function of the bead size, as experimentally
observed. This simple model applies for equilibrium situa-
tions. In the experimental system we analyze here, the
polymerization process is stationary but not at equilibrium,
and the model presented takes into account the simultaneous
polymerization/depolymerization process (or treadmilling)
as well as the stress created by the actin gel on the spherical
bead.

MATERIALS AND METHODS

Construction, expression, and purification of the
GST-ActA-His variant

DNA manipulations were performed by routine procedures (Sambrook et
al., 1989). In a first step, the sequence 59-GGATCCGGTCTAGAG-
AAGCTTCCCGAATTC-39 (encodingXbaI and HindIII within BamHI
and EcoRI) was inserted in the pGEX2T expression vector (Amersham
Pharmacia Biotech, Uppsala, Sweden) yielding pGEX2T-adaptor. In a
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second step, an oligonucleotide 59-CTAGACCCGGGCCCATCACCAT-
CACCATCACTG-39 (encoding six histidines and comprisingSmaI and
EcoRI sites at the 59 and 39 ends, respectively) was inserted in the
pGEX2T-adaptor yielding pGEX2T-his. The third step consisted of intro-
ducing a DNA fragment encoding the ActA protein truncated of its trans-
membrane anchor and the signal peptide. The pCB6-actA1 (Friederich et
al., 1995) expression vector was linearized byEcoRI and filled in using the
Klenow fragment of DNA polymerase I. After heat-inactivation of the
enzyme, the DNA was digested withXbaI and an;1.75-kbXbaI-EcoRI
blunt-ended actA gene fragment was isolated. Finally, the actA fragment
was ligated intoXbaI-SmaI-digested pGEXT2T-his. The final pGEX2T-
actA-his construct encodes GST fused to ActA comprising a six-histidine
tag in the C-terminal region (see Fig. 1A). GST-ActA-His was produced
in Escherichia colistrain BL21 (DE3) and purified successively on a nickel
agarose matrix (purchased from Qiagen GmbH, Hilden, Germany) and on
a Sepharose glutathione matrix (purchased from Amersham Pharmacia
Biotech, Uppsala, Sweden). The elution solution was dialyzed in buffer D
(0.2 M boric acid, pH 8.5) and stored in aliquots at280°C. Protein
concentration was determined as described by Bradford (1976), (reagents
purchased from Bio-Rad, Hercules, CA).

Fluorescent actin preparation

Rabbit skeletal muscle actin was prepared according to the method de-
scribed by Spudich and Watt (1971). Actin was labeled with rhodamine
using the procedure of Kreis et al. (1982). Aliquots were stored at280°C
at a concentration of 2 mg/ml (40mM). Phalloidin was purchased from
Sigma-Aldrich (St. Quentin Fallavier, France) and directly added to the
samples to a final concentration of 0.3mg/ml.

Latex beads

Latex beads were purchased from Polyscience, Inc. (Warrington, PA): we
used carboxylate functionalized latex beads for covalent grafting (25
mEq/g of carboxylate groups). Diameters of particles were chosen in the
1-to-10mm range. Proteins were covalently grafted via EDAC (1-ethyl-3-
(-3-dimethylaminopropyl)carbodiimide)) as described by the manufac-
turer. ActA-grafted beads were stored at 4°C in a storage buffer (20 mM
phosphate buffer, pH5 7.4, 1% BSA, 150 mM NaCl, 20 mM NaN2, 0.5%
glycerol). We made two series of ActA-grafted beads. The first series (we
will call this series “ActA saturated beads”) with beads of various diam-
eters (1mm, 2mm, 10mm) was prepared by incubating the beads in excess
of ActA to saturate the protein surface concentration. The amount of
protein coupled to the beads was determined by subtracting the quantity of
protein remaining in the supernatant after incubation from the initial
amount of protein in the solution. The total surface of the beads was
deduced from their volume and size. The surface concentration of grafted
proteins was then given by the ratio between the total amount of coupled
proteins versus the total surface of the beads. As an example, the concen-
tration of ActA on 10-mm-diameter beads was estimated at (5.66 0.6) 3
1022 protein/nm2 (we reproducibly measured that;14 6 3 mg protein
could be bound to 100ml of a suspension of 2.5% of 10-mm-diameter latex
beads), assuming a molecular mass of GST-ActA-His of 92,890 Da. The
second series of beads (we will call this series “ActA concentration beads”)
was prepared to vary the surface density of ActA protein. The beads were
incubated in a mixture of ActA and BSA at a ratio of 10, 30, 50, 70, and
90% of ActA. The total amount of coupled proteins was determined by the
same method as the previous series, and the amount of ActA proteins
coupled to the beads was deduced, according to the manufacturer instruc-
tions, by SDS-PAGE analysis of proteins remaining in solution (see Table
1). We found that the surface density of ActA did not correspond to the
relative amount of BSA/ActA in the solution, due to the different affinity
of BSA and ActA to carboxylated functions.

Listeria bacteria

We used a modifiedL. monocytogenesstrain described by Lasa et al.
(1995). This strain carries a deletion removing the actA gene and was
transformed with a multicopy plasmid encoding ActA.

Cell line

The human HeLa S3 cell line was grown in Dulbecco’s minimum essential
medium (DMEM) supplemented with 10% fetal calf serum, at 37°C, under
5% CO2.

HeLa cell-free extracts

Cytosolic extracts were prepared following a modification of the procedure
described by Paschal and Gerace (1995). About 109 cells were centrifuged
at 3003 g for 10 min and washed twice in PBS, resuspended in 5 ml buffer
A (5 mM HEPES, pH5 7.4, 5 mM potassium acetate, 2 mM magnesium
acetate, 1 mM EGTA, and a cocktail of protease inhibitors including
Pefablock, leupeptin, pepstatin, and aprotinin at 1mM each), and stirred
slowly at 4°C for 20 min on a rotary shaker. The solution was passed five
times in a cell cracker and centrifuged for 30 min at 40,0003 g, 4°C. The
supernatant was clarified by centrifugation for 60 min at 100,0003 g.
Finally, aliquots of cytosolic extracts (12 mg/ml) were frozen in liquid
nitrogen and stored at280°C.

Gel electrophoresis and immunoblotting

Proteins were analyzed by SDS-PAGE. Immunoblotting was made by use
of the antibody anti-ActA2 against the N-terminus of ActA (Golsteyn et al.,
1997). Transfer to nitrocellulose and antibody incubation were performed
according to the method described by Burnette (1981).

Methods of observation

Beads were directly taken from the storage buffer.Listeria were first
suspended in half the volume of Xb buffer (10 mM Hepes, pH5 7.7, 100
mM KCl, 1 mM MgCl2, 0.1 mM CaCl2, 50 mM sucrose) before adding to
cell-free extracts supplemented with 30 mM creatine phosphate, and 1 mM
ATP as described by Marchand et al. (1995). In each case the volume
increase did not exceed 15% of the initial volume of the extracts.

Fluorescence microscopy

Observations were made of beads or bacteria in extracts containing a final
concentration of 0.5mM rhodamine actin. A 1-ml suspension of 2.5%
beads in storage buffer (or from the resuspendedListeria in Xb buffer) was
resuspended in 10ml of cell-free extracts supplemented with rhodamine
actin, creatine phosphate, and ATP. Fiveml of the mixture was squashed
between a microscope slide and a 22-mm-square coverslip sealed with
varnish. Samples were observed by fluorescence microscopy with an
inverted microscope (IX70, Olympus Optical Co. Gmbh, Hamburg,
Germany).

Electron microscopy

Samples for observation were prepared as described by Tilney and Portnoy,
1989. A numbern ml of 2.5% bead solution in storage buffer (or 8ml
resuspendedListeria in 10 times less volume of Xb) was added to 100ml
of cell-free extracts supplemented with ATP and creatine phosphate.n was
calculated to have the same total bead surface for the different samples:
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n 5 4 or 8, respectively, for 1- and 2-mm-diameter beads; for 10-mm-
diameter beads, we took 8ml from 53 reconcentrated beads in storage
buffer. The mixture was incubated 4 h at room temperature. The latex
beads and/or the bacteria were pelleted in a horizontal centrifuge (3000
RPM for 3 min), and incubated for 40 min at 4°C with 1% glutaraldehyde,
0.5% of tannic acid in phosphate buffer, 50 mM, pH5 6.3, rinsed twice in
phosphate buffer, incubated 20 min at 4°C in phosphate buffer containing
0.5% osmium, rinsed three times with water, and stained with an aqueous
solution of 2% uranyl acetate for 1 h at 4°C. The samples were then
dehydrated in alcohol and embedded in epon. Gold labeling was performed
by incubating 4ml beads in a solution (2.5% BSA in PBS) containing 1/150
of the polyclonal rabbit antibody anti-ActA2 against the N-terminus of
ActA (Golsteyn et al., 1997). Then, after washing, the beads were incu-
bated with protein A coupled to 10 nm gold particles (PAG10) purchased
from Dr. J. W. Slot, Department of Cell Biology, Utrecht University, The
Netherlands. Ultrathin sections (thickness 706 10 nm) stained with
ethanolic uranyl acetate and lead citrate were observed in a Philips CM 120
electron microscope at 80 kV.

RESULTS

Purification of GST-ActA-His

The protein ActA was first purified on a nickel agarose
matrix and further on a Sepharose glutathione matrix. The
purity of the protein was confirmed by SDS-PAGE under
reducing conditions. Coomassie staining of the gel (Fig. 1
B) revealed one protein band migrating at a position corre-
sponding to an apparent molecular mass of 120 kDa that
was higher than expected from the amino acid sequence (see
Fig. 1 A): 92 kDa. It is likely that this apparent migration
behavior is due to the high proline content of ActA (Kocks
et al., 1992). Antibodies against ActA reacted with this
band, confirming that indeed this band corresponded to
ActA.

FIGURE 1 (A) Diagram describing GST-ActA-His, the variant of ActA used for our experiments. Amino acid numbers are shown. (B) SDS-PAGE
analysis of the purified protein GST-ActA-His (right column) and molecular weight marker proteins marker (left column).
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Experimental assay: Listeria in cell-free extracts
prepared from HeLa cells

We set up an assay for studyingListeria in vitro in cell-free
extracts prepared from HeLa cells. Cell-free extracts were
supplemented with ATP, creatine phosphate, and rhodamine
actin as described in Materials and Methods. During the
incubation;40% ofListeria developed an F-actin tail, and
the length of the comet-like tail ranged from 15 to 30mm.
The velocity ofListeria varied between 0.756 0.5mm/min
within a population of 30 movingListeria. Some of the
comets displayed a periodic density (see Fig. 2). A similar
phenomenon has been described for an ActA truncated
variant of Listeria (Lasa et al., 1997). ImmobileListeria
were surrounded with an isotropic F-actin cloud and did not
form any comet-like tail.

ActA saturated beads in cell-free extracts
prepared from HeLa cells

GST-ActA-His was covalently grafted to polystyrene beads
functionalized with COOH (of 1mm, 2 mm, and 10mm in
diameter). These beads were added to cell-free extracts
supplemented with rhodamine actin as described in the
experimental assay forListeria. We confirmed that the

quantity of ActA detached from the beads was negligible
(,5%) by analyzing the extracts after incubation with the
2-mm-diameter beads by immunoblotting with ActA spe-
cific antibodies. Within 30 min the beads were surrounded
by a fluorescent staining (see beads of 2-mm-diameter on
Fig. 2), whose intensity increased with time, indicating the
accumulation of actin around the beads. The beads were
easily detected by phalloidin staining (0.3mg/ml final con-
centration), which revealed that this actin structure was
composed of F-actin. Growth of the actin gel was stabilized
after 4 h, as confirmed by video time-lapse microscopy
observations. At this time the beads reduced their Brownian
motion and became stuck to the bottom slide.

To test whether the quantity of F-actin accumulated
around beads and around bacteria was the same, we mixed
beads andListeria in one preparation (Fig. 2): the fluores-
cence intensity was indeed equivalent for beads and bacteria
(within a relative error of 10%). After 4–5 h the actin gel
around the beads stopped growing, whereasListeria con-
tinued to develop an F-actin tail.

The three following tests confirm the specificity of ActA
for F-actin gel growth:

• The same type of carboxylate latex beads (2mm in
diameter) grafted with BSA did not recruit rhodamine
actin (the quantity of grafted BSA was estimated at 23
1021 molec./nm2) under the same conditions;

• uncoupled carboxylated beads did not nucleate an actin
gel as well;

• we tested that actin nucleation was not a simple effect
due to the presence of lysine in ActA (although the global
charge of ActA is expected to be negative in physiolog-
ical conditions, since the calculated isoelectric point of
GST-ActA-His is 5), as polylysine, under certain exper-
imental conditions, is reported to nucleate actin polymer-
ization (filaments are oriented with their pointed end
toward the nucleating surface) (Brown and Spudich,
1979): we repeated the experimental assay in cell-free
extracts with beads coated with polylysine instead of
ActA. We used three types of polylysine (ref. P8920,
P0899, P1149 purchased from Sigma). In none of the
three samples, under similar experimental conditions, did
we observe any fluorescence due to actin assembly (long
filaments,;50 mm, appearing after 24 h are of a very
different nature). We checked that our polylysine was
indeed functional: beads grafted with polylysine placed
in a buffer containing 0.5 M KCl, 0.5 mM MgCl2, 0.2
mg/ml G-actin did nucleate F-actin, as described by
Brown and Spudich (1979). Under these conditions,
beads grafted with ActA did not generate actin filaments
when placed in buffer containing 0.5 M KCl, 0.5 mM
MgCl2, 0.5 mM rhodamine actin, supplemented with
G-actin to a final concentration of 0.2 mg/ml actin. This
is consistent with the report that incubation ofListeria

FIGURE 2 Mixture of beads 2mm in diameter (round objects) coated
with GST-ActA-His andListeria monocytogenes(elongated objects) a few
hours after incubation in HeLa cell-free extracts. Fluorescence microscopy.
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with actin alone did not result in actin association with
bacteria (Welch et al., 1997).

We cut the GST part of GST-ActA-His with thrombin: we
obtained four segments including the GST segment, but
three others as well despite the fact that no other site of
ActA was supposed to react with thrombin. We did the same
experiments on the ActA-grafted latex beads with GST-
ActA-His, and got the GST segment only. Fluorescence
microscopy observations of these latter beads in the extracts
(actin marked with rhodamine) showed the same behavior
as nontreated beads: this shows that the presence of GST
does not affect, in a significant way, the polymerization
process.

We examined the protein-grafted beads and theListeria,
incubated in cell-free extracts for 4 h, by electron micros-
copy to observe their surrounding actin gel in detail. Two
important observations were made (see Fig. 3). First, neither
the 2-mm-diameter beads grafted with BSA nor the uncou-
pled carboxylated beads produced an actin gel: this con-
firms the observations made by fluorescence microscopy.
Second, the thickness of the actin gel produced by GST-
ActA-His-grafted beads was found to vary with the radius
of the beads. Third, we examined actin structures and con-
firmed that both the beads coated with ActA andListeria
produced similar F-actin gels.

The effect of ActA concentration on beads in
cell-free extracts

The role of ActA density was studied by preparing beads
that contained different ratios of BSA and ActA. These
beads were incubated in supplemented cell-free extracts and
observed both by fluorescence microscopy and electron
microscopy. The estimated densities of ActA are given in
Table 1. We confirmed that the density of ActA around one
bead was homogeneous by gold labeling (see Fig. 4) for the
beads with the highest and the lowest density. The amount
of PAG10 around one bead was found to be 63.36 30
PAG/bead on the 3.86 0.6 3 1016 prot./m2 beads by
counting 13 beads on ultrathin sections that crossed the bead
through its center. Fluorescence microscopy revealed that
the fluorescence intensity decreased when the ActA density
decreased.

The thicknesse of the actin gel layer around both ActA
saturated beads and ActA concentration beads is given in
Table 1; e was measured on images taken at the same
magnification (328,000). We examined;100 beads and
performed a statistical analysis on a random population of
15 beads, making 20 measurements per bead. If the ultrathin
section did not cross the bead right through its center, a gray
ring of width d (projection of the bead edge) was visible
around the latex beads on the images. The radial thickness

e of the actin gel was deduced from:

e>
«

Î1 1 SddD
2

where« is the F-actin thickness measured on the image, and
d 5 70 6 10 nm the thickness of the section (see Materials
and Methods). The correcting factor 1/[=1 1 (d/d)2] does
not qualitatively change the experimental results, but re-
duces the dispersion. The variation of the bead size for the
1- and 2-mm beads was within 4% (see Table 1). Although
the size range of the 10-mm calibrated beads was within
10%, it happened that we observed beads as large as 20mm,
and we took advantage of this variation to make measure-
ments of actin gel size around one of these larger beads. We
estimated its radiusR from the electron microscopy image
by using geometrical arguments, which give:

R> rÎ1 1 SddD
2

wherer is the radius of the bead section on the image, and
d is defined above.

The experimental values in Table 1 show that 1) the
consequence of a decrease in ActA surface density is that no
actin gel is formed, below a density of the order of 33 1016

prot./m2; and 2) the thickness of the actin gel around ActA
saturated beads is an increasing function of the radius of the
bead.

DISCUSSION

Let us now try to understand quantitatively why, in a
spherical geometry, the polymerization stops when a given
thickness of actin gel is reached. In this context, the word
“gel” means that actin filaments are cross-linked in a net-
work that resists both static and shear compression. Any
addition of G-actin material at the particle/gel interface
requires the buildup of a stress able to push away the
already formed gel. Within the time scales over which the
polymerization process takes place the gel is clearly in
mechanical equilibrium. The following model simulta-
neously takes into account that actin is polymerizing at the
surface of the sphere (i), depolymerizing at the outer end
(e), and that the gel is constrained. Our notations are sum-
marized in Fig. 5.

Let dni/dt and dne/dt be, respectively, the number of
monomers added to the gel per unit time at the surface of the
bead (i) and at the outer surface of the gel (e); according to
van’t Hoff (1884) one can write:

dni

dt
5 v1

b z ci 2 v2
b (1a)

dne

dt
5 v1

p z ce 2 v2
p (1b)
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whereci andce are, respectively, the concentration of free
G-actin monomers at the surface of the bead and at the outer
surface.v1

b andv1
p are the polymerization rates for barbed

(b) ends and pointed (p) ends, andv2
b and v2

p are the
probability for a monomer to leave the filament at the
barbed (b) and pointed (p) end. This notation (b and p)

FIGURE 3 Electron micrographs of
latex beads (orListeria) incubated in
HeLa cell-free extracts. (a) Latex beads
(f 5 2 mm) coated with BSA; (b) latex
beads (f 5 1 mm) coated with GST-
ActA-His; (c) latex beads (f 5 2 mm)
coated with GST-ActA-His; (d) latex
beads (f 5 10 mm) coated with GST-
ActA-His; (e) bacterium with its actin
comet tail. One can observe that the
beads are slightly deformed, probably
because of processing for EM analysis.
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implies that the actin filaments are oriented with their
barbed end toward the beads surface, and their pointed end
toward the outer part of the gel. This assumption is in
agreement with electron microscopy observations onListe-
ria comets (Tilney et al., 1992) but we have no direct
experimental evidence of actin filament polarity on beads.
However, as an indirect proof, the model based on this
assumption accounts for experimental results.

Considering that polymerization of actin filaments occurs
on the surface of the bead, the inner part of the gel is
stressed, which means that the coefficientsv1

b and v2
b of

dni/dt depend on the stresss 5 srr(r i). First we calculate the
stress created by the actin gel on a bead. Second, we
theoretically describe the general situation that includes
diffusion of G-actin monomers and treadmilling of actin
filaments. We discuss the different possible regimes and
show that in our experimental conditions, treadmilling is
essentially negligible. We show that, in this limit, the thick-
ness of the grown gel depends on the radius of the bead, as
measured experimentally. We end up in discussing the
possible conditions under which beads can nucleate a comet
tail made of actin filaments.

Expression of the stress s(r, t) as a function of ri

and the Young’s modulus of the gel

The radial component of the stresssrr(r, t) and the tangen-
tial components''(r, t) of the stresss(r, t), must obey the
equilibrium equation (in spherical coordinates).

¹W z s~r, t! 5 0 5
1

r2



r
r2srr~r, t! 1

2

r
s''~r, t! 5 0 (2)

A spherical layer of area 4Pr i
2 and volume 4Pr i

2dri,
initially polymerized (synthesized) and cross-linked at the
particle surface at timet9, is converted after a time (t 2 t9)
to a spherical layer of area 4Pr(t)2 and volume 4Pr(t)2 dr(t).
The tangential component of the stress can be simply eval-
uated as (Landau and Lifchitz, 1967):

s''~r, t! 5 CSr~t! 2 r i

r i
D (3)

whereC is the elasticity modulus of the gel.
The validity of Eq. 3 requires that the gel deformation is

small enough, that it can be considered in the linear elas-
ticity regime. Considering that the observed thicknesses are
of the order of a few hundred nanometers for several micron
diameter spheres, this is a reasonable approximation.

Let us define the outer radius of the gel byre(t). At time
t 5 0, re(t 5 0) 5 r i. Furthermore, at any given time, the
absence of external stress on the gel surface is expressed by:

srr~re, t! 5 0 (4)

Making use of Eqs. 2–4, one can calculate the radial
component of the stress as a function of radius vectorr:

srr~r, t! 5 2CFre
2~t!

r2 Sre~t!

3r i
2

1

2D 2
r

3r i
1

1

2G (5)

As a result, the gel exerts a stresssrr(r 5 r i, t) 5 s(t) on
the bead surface, given by:

s~t! 5 2CFre
2~t!

r i
2 S re

3r i
2

1

2D 1
1

6G (6)

This stress in turn controls the polymerization rate at the
bead surface.

Steady-state treadmilling regime

In the stationary regime, the gel thicknesse 5 re 2 r i is
independent of time; polymerization at the inner surface
exactly balances depolymerization at the outer surface and a
monomer diffusive flux transports the monomers from the
outer surface to the inner one. This implies:

dni

dt
5 2

dne

dt
(9)

r2JC~r! 5 const, (10)

FIGURE 4 Immuno-gold (10 nm) labeling of beads grafted with 3.86
0.6 3 1016 ActA/m2. Beads are deformed due to EM processing.
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and

r2JC~r! 5 r i
2JC~r i! 5 ~r i 1 e!2JC~re! 5 r i

2S2 dni

dtDj22 (11)

in which JC(r) is the flux (algebraic value) of monomeric
actin (G-actin), andj the average distance between ActA
molecules.

As usual, the diffusion flux can be expressed in terms of
the gradient of the monomeric concentrationC(r), and the
monomer diffusion coefficientD:

JC~r! 5 2D
dC~r!

dr
(12)

If we can takeD as a constant, then Eqs. 10 and 12 give:

JC~r! 5 2D
ce 2 ci

e
z
r i~r i 1 e!

r2 (13)

wherece and ci stand for the concentration of monomers
outside the gel and at the bead surface, respectively.

Combining Eqs. 9, 11, and 13, we obtain:

dni

dt
~s, ci! 5 2

dne

dt
5 D

ce 2 ci

e S1 1
e

r i
Dj2. (14)

That is, with Eqs. 1 and after elimination ofci:

v1
b~s!Sce 1 ~v1

pce 2 v2
p!

e

Dj2F1 1
e

r i
GD 2 v2

b~s! 5 v2
p 2 v1

pce

(15)

Equation 15 determines the gel thicknesse as a function of
the polymerization rates, their stress dependence, the diffu-
sion coefficientD, the ActA densityj22, the external mo-
nomeric concentrationce, and the particle radiusr i. This is
a treadmilling regime in which the polymerization rate is
governed by the stress buildup and monomer diffusion,
rather than by an adjustment of the monomer concentration,
as would be the case in solution (Carlier et al., 1997).

Gel thickness at steady state

The ratesv1
b(s) andv2

b(s) can be related to the stress-free
ratesv1

b(0) andv2
b(0) by a simple use of Kramers or Eyring

rate theories (Eyring, 1935; Kramers, 1940) in which the
potential barriers to be overcome for either adding or sub-
tracting a monomer are shifted by the mechanical work
against addition or for subtraction of the monomer at the
barrier maximum. As usual,k is the Boltzmann constant and
T the temperature (S.I. unit).
Hence:

v1
b~s! 5 exp~2j2a1s/kT!v1

b~0! (16a)

v2
b~s! 5 exp~1j2a2s/kT!v2

b~0!. (16b)

The force acting on a single filament issj2, anda1, a2 are
the distances over which the force produces work to reach
the maximum of the potential barrier. In a simple picture,
a1 1 a2 > a, wherea is the size of a G-actin monomer.
Equation 6 expressing the stresss can be simplified when
e ,, r i:

s > CSe

r i
D2

(17)

TABLE 1 Thickness of the actin gel as a function of the radius of the beads

r i (mm)
Estimate of the
ActA Density e (nm) Quotiente/ri

0.486 0.02 saturated (5.66 0.6 1016 prot./m2) 94 6 10 23 1021

0.956 0.04 saturated (5.66 0.6 1016 prot./m2) 146 6 10 1.53 1021

4.726 0.48 saturated (5.66 0.6 1016 prot./m2) 503 6 20 13 1021

10.16 0.5 saturated (5.66 0.6 1016 prot./m2) 790 6 20 0.83 1021

0.956 0.04 3.86 0.6 1016 prot./m2 125 6 10 1.33 1021

0.956 0.04 2.36 0.4 1016 prot./m2 small aggregates of actin (#40 nm)
0.956 0.04 2.16 0.3 1016 prot./m2 small aggregates of actin (#40 nm)
0.956 0.04 1.76 0.3 1016 prot./m2 no actin detected
0.956 0.04 6.26 1 1015 prot./m2 no actin detected

r i is the average radius of the beads given by the manufacturer, except in the line wherer i 5 10.1 mm is out of range (twice the average size, see the
Discussion);e is the thickness of the actin gel around beads of various diameters; the estimate of the density of grafted ActA is measured as described in
Materials and Methods.

FIGURE 5 Notations used in the text.r i is the radius of the bead,r and
u the spherical coordinates,e is the thickness of the gel layer.re 5 r i 1 e.
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If we further remark that under most practical circumstances
v1

pce ,, v2
p, we can rewrite Eq. 15 in the form:

cev1
b~e/r i! 3 S1 2

e/e*

~1 1 ~e/r i!!
D 5 v2

b~e/r i! 1 v2
p (18)

where two important lengths clearly emerge: the bead radius
r i and the diffusion lengthe* 5 Dj2ce/v2

p. They correspond
to two different possibilities of reaching steady state: either
the stress buildup is so large that the polymerization rate
essentially drops to zero, or the diffusion becomes so slow
that the monomer concentration at the bead surface becomes
small enough that it is balanced by the depolymerization at
the outer surface.

Diffusion-limited regime

Let us first considerr i .. e* (i.e., essentially flat surfaces,
no stress can build up); knowing from Eq. 18 thate , e*,
Eq. 18 simplifies to:

cev1
b~0! 3 S1 2

e

e*D 5 v2
b~0! 1 v2

p (19)

or

e5 e*S1 2
~v2

p 1 v2
b~0!!

cev1
b~0! D (20)

If we further remark that under usual circumstances the
stress-free initial polymerization ratece v1

b(0) is much larger
than both the depolymerization rate at the pointed endv2

p

and the stress-free depolymerization rate at the barbed end
v2

b(0), then

e< e* (21)

Note that at steady state in this regime, the polymerization
rate isciv1

b(0) 2 v2
b 5 v2

p (ci ,, ce). The concentration at
the bead surface reaches the steady-state treadmilling con-
centration obtained in solution (Carlier et al., 1997).

Stress-limiting regime

Let us now consider the opposite limite* .. r i; anticipating
that r i $ e, Eq. 18 reads:

cev1
bSe

r i
D 5 v2

p 1 v2
bSe

r i
D. (22)

Clearly, in this regime the gel thickness is governed by the
bead radius thickness. Whenever ATP hydrolysis is not
directly involved in the polymerization process [note that
ATP hydrolysis occurs later, once the polymerization has
taken place and detailed balance should hold], one can

write:

v1
b~0!

v2
b~0!

5 v 3 exp~Dm1/kT! (23a)

ce
v1

b~0!

v2
b~0!

5 exp~Dm/kT! (23b)

wherev is the reaction volume,Dm1 the chemical potential
difference per monomer, between the unpolymerized state
and the polymerized state excluding the translational en-
tropykT3 ln(cev), andDm the chemical potential difference
per monomer including the translational entropy.Dm rep-
resents the chemical energy released in the polymerization
process. Using Eq. 16 and Eq. 23b we get:

cev1
b~s!

v2
b~s!

5 expSDm 2 sj2a

kT D (24)

Dividing Eq. 22 byv2
b, one can extract:

sj2a 5 Dm 2 kT3 lnS1 1
v2

p

v2
b~s!D (25)

In principle, Eq. 25 is only an implicit equation fors, and
hence fore/r i. However, the ratiov2

p/v2
b comes only in a

logarithm, and it only appears as a corrective term. If we
ignore the logarithm, Eq. 25 expresses the fact that the
polymerization stops in this regime, when the mechanical
work required to add a new monomer equals the chemical
energy gained in the process. The depolymerization at the
pointed end appears as a correction to this basic feature
(unless the depolymerization rate under stress is unexpect-
edly small).

Transforming Eq. 25 into an equation for the gel thick-
ness by using Eq. 17, we get:

e5 e** 5 r iS Dm̃

Cj2aD
1/2

(26)

in which we have writtenDm̃ 5 Dm 2 kT 3 ln(1 1 v2
p/v2

b).
The gel thickness is proportional to the bead radius,

which simply expresses that there is one stress value for
which steady state is reached.

General case and orders of magnitude

Equation 18 may be easily solved, for instance graphically
as shown in Fig. 6. The general solution gives values
intermediate betweene* and e**. More important are the
estimates ofe* and e**. In our experiments, in which the
distance between ActA molecules on the surface is 42–77 Å
(see Materials and Methods; Table 1), we take a mesh size
which is the smallest possible length imposed by the actin
filament diameter:j 5 10 nm; the concentration in free
G-actin in the HeLa cell extracts is expected to be of the
order of 0.5mM, as suggested by the critical concentrations
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of actin filaments dynamics (Carlier, 1991), since we are in
a situation where the pointed ends depolymerize. This gives
a ce value of 3 3 1014 molec./cm3; v2

p can be estimated
(Theriot et al., 1992) from our observations onListeria as
the ratio between the velocity of the bacteria (0.75mm/min)
and the length of the comet (20mm): we getv2

p ' 6 3 1024

s21. The value of the monomeric diffusion coefficient of
G-actin has been measured in a buffer (buffer A: 2 mM Tris
(pH 5 8), 0.2 mM CaCl2, 1.0 mM ATP, 0.5 mM dithio-
threitol [DTT]): Db 5 5 3 1027 cm2/s (Lanni et al., 1981).
Knowing that the viscosity of cell-free extracts is about
three times that of water (or buffer) (Fushimi and Verkman,
1991), we infer a valueD ' 1.6 3 1027 cm2/s in our
experiments. Hence we expecte* to be of the order of 1
mm. This estimate represents an upper limit, since steric
hindrance and temporary interactions of monomers with the
gel proteins could slow down the diffusion process. In any
case this length is large compared to the experimentally
found thicknesses, and one expects the experiment to cor-
respond to the stress-governed regime.

The radius dependence of the gel thickness observed
experimentally (Table 1) confirms these expectations.
Equation 26 gives us a prescription for estimating the pro-
portionality ratio expected betweene andr i. If we take the
gel elastic modulusC > (K/jc

4) 5 (kTlp/jc
4) in which K 5

kTlp is the bending elastic modulus of actin filaments,lp
their persistence length, andjc the average distance between
cross-links, we get:

e

r i
> SDm

kTD
1/2 jc

2

j~lpa!1/2 . (27)

With Dm ; 14 kT (Gordon et al., 1976),jc > j > 1026 cm,
lp > 15 mm (Yanagida et al., 1984; Ott et al., 1993; Gittes
et al., 1993; Dro¨gemeier and Eimer, 1994; Isambert et al.,
1995),ap ' 5 3 1027 cm, we obtain (e/r i) > 1021, which
is typically what we observe experimentally. We can thus
conclude that the polymerization process in our experiment
is indeed stopped by the mechanical stress buildup. Note
that the above-discussed numbers imply an elastic modulus
C (a few 106 Pa, given thatj ' 1026 cm) large compared
to values measured with actin gels. If we take as an upper
limit of C the largest value measured in theListeria comet
(F. Gerbal et al., submitted for publication), i.e.,C ' 104

Pa, we are led with a lengthj ' 3 3 1026 cm, which
implies that not all ActA are functional at the surface. We

FIGURE 6 Graphic solutions for Eq. 18 are obtained by rewriting Eq. 18
using Eqs. 16a and b, taking for the sake of argumenta1 5 a2 5 a/2, which
leads to:

cev1
b~0! 3 expS2aSe*

r i
3

e

e*DDF1 2
e/e*

1 1 e/r i
G

5 v2
b~0! 3 expS1 aSe*

r i
3

e

e*DD1 v2
p,

with

a 5
j2aC

2kT
;

the left and right part of the above equation are, respectively, represented
bold and dashed; the numerical values needed are the ones given in the
text:

v2
p > 6 3 1024s21, j > 100 Å,a > 50 Å, lp > 15 mm,

C <
kTlp
j4 , cev1

b~0! > 3.33 1022s21

as estimated from the slopeS of the experimental curve giving the thick-
nesse versus time:S5 200 (nm)/203 60 (s) (V. Noireaux, manuscript in
preparation) by writingcev1

b(0) 5 S/a, thenv2
b(0) 5 2.7 3 1028 s21 as

deduced from Eq. 24. (a) Taking e*/ r i 5 1022, e 5 e* is the solution, as
described in the text; (b) takinge*/ r i 5 1 gives the solutione/e* 5 1021;
(c) takinge*/ r i 5 102, the solution ise/e* 5 0.001, and consequentlye >
e** and e/r i 5 1021 as measured experimentally.
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then find (e/r i) ' 0.3, which is still compatible with our
experiments.

Spherical symmetry versus “comet”

The above-developed arguments show that if the polymer-
ization process takes place on a spherically symmetric sub-
strate, the growth stops automatically at a given thickness.
This will always be the case unless a symmetry-breaking
transition takes place. A very rough estimate of this sym-
metry-breaking possibility goes as follows: at the outer
surface, although the normal stress vanishes, the tangential
stress (given by Eq. 3) is at its maximum: the gel is under
tangential tension. In general, beyond a given threshold,
solid materials under tension break. The threshold value
depends on material properties, but most of the time it can
be expressed as a deformation threshold (i.e., a strain thresh-
old), which turns out to be of order one. In other words,
when (re 2 r i)/r i 5 (e/r i) ' 1, the gel is very likely to
develop a fracture. This fracture releases a significant
amount of the tensile stress at the interior of the gel layer,
and consequently also a sizable amount of the normal stress
at the inner surface. The polymerization process can then go
on, and one can understand that a comet can result from this
initial fracture. For this to occur, one wants (from Eq. 27):

SDm

kTD
1/2 jc

2

j~lpa!1/2 < 1. (28)

SinceDm is essentially of order 10kT, and lp, a are not
subject to large changes, one needs a ratio (jc

2/j) as large as
possible to have chances of observing symmetry breaking
according to this mechanism. It is striking to remark that
native Listeria develop comets containing;103 filaments
per cross section of the comet, which corresponds to an
average distance between ActA of;100 nm: if we assume
jc ' j, condition 28 is then essentially fulfilled. Note,
however, that in our experimentsjc and j are clearly dif-
ferent, since varyingj moderately can result in the absence
of the gel.

In this argument, the size of the particle does not play a
role. This is correct as long as we ignore fluctuations. The
relevant fluctuations are ActA surface density fluctuations
that are frozen during the grafting process. As a rough rule
of thumb they are of the order of=N, whereN is the total
number of ActA on the bead. Typically one-half of the bead
will have an ActA excess of=N over the other half: this
considerably decreases the instability threshold. The exact
conditions under which a comet could develop go beyond
the scope of this work. We can easily understand that the
smallest bead radius compatible with a gel formation will be
the best, since this corresponds to the largest relative un-
balance. This is confirmed by recent observations made by
the group of J. A. Theriot (Cameron et al., 1999), who
propose an alternative mechanism involving the stochastic-

ity of the polymerization process of actin filaments (van
Oudenaarden and Theriot, 1999).

CONCLUSIONS

This work confirms the crucial role played by ActA in actin
polymerization and demonstrates the interest of studying
this process in a spherical topology. If there were no cross-
linking of the actin filaments one would observe the growth
of a polymerized layer bound only by the diffusion length
e* (see Discussion). Our results show unambiguously that
the factor limiting the thickness of the actin gel is the
mechanical stress exerted by the gel on the bead surface.
The fact that an external force could modify the polymer-
ization process of microtubules or actin filaments has been
previously analyzed theoretically (Hill and Kirschner,
1982). In our work, the force per filament necessary to
block polymerization is found to be of the order of 10 pN,
which is quite reasonable (i.e., 10kT per monomer size). It
does not provide either strong support or strong opposition
to any molecular theory (Mogilner and Oster, 1996). It is
interesting to realize that the pressure exerted by the gel on
the bead is of the order of one atmosphere. Scaling this
pressure with ActA density allows us to estimate the max-
imum force a nativeListeria is able to develop: we find a
force of the order of a few nanonewtons, much larger than
adverse forces a cell could oppose [note, however, that
buckling of theListeria comet would drastically decrease
this force (Gerbal et al., 1999)]. Our observations are very
close to the one made by M. Dogterom on microtubules
polymerization (Dogterom and Yurke, 1997): the orders of
magnitude are fairly similar. In this last experiment, mea-
surements are made on single microtubules and the force is
due to the existence of an external obstacle. In our case the
force results from the self-developed stress bound to the
spherical topology. Note that a nativeListeria has globally
the same topology, so that our work demonstrates the im-
portance of mechanical stresses inListeria as well. Finally,
it is interesting to remark that the incidence of spherical
topology on polymeric growth properties has been pointed
out in other contexts; for instance, the problem of “starburst
polymers” (de Gennes and Hervet, 1983), where the coor-
dination number of the reacting entity should change at a
certain radius because of steric hindrance. In this case, the
polymerization that takes place at the outer edge of the star
is not stopped, but the number of bonds allowed in the
reaction decreases.
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