Supporting Information

Genetically expanded cell free protein synthesis using endogenous pyrrolysyl orthogonal translation system.

Yonatan Chemla¹, Eden Ozer¹, Orr Schlesinger¹, Vincent Noireaux², Lital Alfonta¹*

¹Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 8410500,Israel.

²School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55401, USA

*Corresponding Author: Lital Alfonta: <u>alfontal@bgu.ac.il</u>;

Table of Contents:

Cover page	S-1
Table S1 Transformation and strain matrix	S-2
Table S2 Strains and plasmids used in this research	S-4
Table S3 A comparison between genetic code system/methodologiesS-5-S	S-6
Figure S1 Growth curves of the C321. $\Delta prfA$ strains	S-7
Figure S2 N ^ε -Boc-L-lysine Incorporation into deGFP (Various concentrations)S	S-8
Figure S3 N ^ε -Propargyl-L-lysine incorporation into deGFP (Various sites)	5-9
Figure S4 N ^ε -Propargyl-L-lysine multiple site incorporation kinetics (deGFP)S-	-10
Figure S5 Detailed LC-MS resultsS-11-S-	-12
Figure S6 EGFP Calibration curvesS-	-13
Figure S7 Bradford calibration curveS-	-14
Gene sequencesS	-15
ReferencesS	-16

Plasmid / Strain	pEVOL PylRS (Pyl- OTS) ^a	pEVOL PylRS- AF (PylAF- OTS) ^b	pSUP pACF (pAcF- OTS) ^c	pKD SepRS (Sep-OTS) ^d	No OTS
C321.Δ <i>prf</i> A C321.Δ <i>prf</i> A EXP	+ +	+	+	+	+
C321 (i.e. <i>prf</i> A+)	+				
BL21(DE3) DH5α	+ +				

Table S1. Different transformations performed in each experiment conducted in this study

^a Pyl-OTS: Mm-pyrrolysil synthetase/Mm-tRNA_{CUA}^{Pyl} (Blight et al., 2004; Srinivasan et al., 2002) ^b PylAF-OTS: Mm-pyrrolysil synthetase/Mm-tRNA_{CUA}^{Pyl} (Herner et al., 2013). ^c pAcF-OTS: Mj-para-aceto-phenylalanyl synthetase/Mj-tRNA_{CUA}^{Opt} (Wang et al., 2003). ^dSep-OTS: Mm-phospho-seryl synthetase/Mm-tRNA_{CUA}^{Sep} and Ef-sep (an orthogonal elongation factor) (Park et al., 2011).

Table S2. Strains that were used for CFPS extract preparation and plasmids that were used both as OTS in the Extract strains and as expression template for the CFPS reactions.

Strains/ Plasmids	Details, Use & Rational of use	References				
Strains						
C321.AprfA	Genomically recoded <i>E. coli</i> having all (321) TAG nonsense codons replaced and release factor 1 (RF1) knockout, making it ideal for Amber suppression (genetic code expansion). Herein, because of its attributes used as main chassis. (Cm^R)	(Lajoie et al., 2013) , (Addgene #48998)				
C321 (RF1+)	Same as above, release factor 1 has not been deleted. Used as a control for the effect of RF1 on suppression efficiency. (Cm ^R)	(Lajoie et al., 2013), (Addgene #48999)				
DH5α	(F- endA1, glnV44, thi-1, recA1, relA1, gyrA96, deoR, nupG, Φ 80dlacZ Δ M15, Δ (lacZYA-argF)U169, hsdR17(rK- mK+), E. coli strain that transforms with high efficiency. Like many cloning strains, DH5 alpha has several features that make it useful for recombinant DNA methods.	(Phue et al., 2008; Taylor et al., 1993) (NEB product #C2987H)				
BL21(DE3)	(<i>F_</i> , <i>ompT</i> , <i>hsdSB</i> (<i>rB_</i> , <i>mB</i>), <i>dcm</i> , <i>gal</i>) <i>E</i> . <i>coli</i> strain that express proteins (Also under T7 promoters) and replicates plasmid DNA with high efficiency.	(Phue et al., 2008)				
Plasmids						
pEVOL <i>Mm</i> PylRS/ <i>Mm</i> PyltRNA (i.e. the Pyl-OTS)	Orthogonal translation system (OTS) plasmid containing 2 copies of the $MmPylRS$ gene under the regulation of araBAD and the glns promoters (induced by arabinose) and the $MmPylT$ gene under the regulation of the proK promoter. (Cm ^R)	(Young et al., 2010) (Kind gift from E. Lemke)				
pEVOL <i>Mm</i> PylRS- AF/ <i>Mm</i> PyltRNA	Same as above but the <i>MmPylRS</i> gene mutated to accept 1,3-benzothiazole (bioorthogonal fluorescent dyes) derivatives (Cm ^R)	(Herner et al., 2013) (Kind gift from Prof. E. Lemke)				
pSUP pAcF	Orthogonal translation system (OTS) plasmid containing the MjTyrRS (pACF) gene under the regulation of glnS promoter and 6 copies of the MjTyrT genes under the regulation of 2 different proK promoters. (Cm ^R)	(Ryu and Schultz, 2006) (Kind gift from P. G. Schultz).				
pKD SepRS, EFSep , 5x	Orthogonal translation system (OTS) used in	(Park et al.,				

tRNASep (B40 OTS)	phosphoprotein synthesis. Expresses the MjSep-accepting	2011)
	tRNA (tRNASep), the M. Maripaludis Sep-tRNA synthetase	(Addgene
	(SepRS) and an engineered EF-Tu (EFSep) (Kan ^R)	#52054)
pBEST-OR2-OR1-Pr-	Expression plasmid, deGFP expression is regulated by the	(Sun et al.,
UTR1-deGFP-T500	OR2-OR1 promoter (bacteriophage Lambda promoter with	2013)
	one mutation). The <i>deGFP</i> gene was mutated to create the	(Addgene
	following variants: Y35X (i.e. Y35TAG mutation) (Amp ^R)	#40019)

Table S3. A comparison between genetic code system/methodologies

Item	Endogenous Code expanding CFPS	Exogenous code expanding CFPS	In vivo
Time from PCR product to protein expression	Reaction: Overnight	tRNA synthesis : 2 days aaRS synthesis : 2 days Reaction: Overnight	Co-Transformation: 1day Expression: 1day Purification: 1day
Expression vector needed	No	No	Yes
Amount of UAA needed	~1 µmol(UAA)/mg(Protein)	~1 µmol(UAA)/mg(Protein)	~100 µmol(UAA)/mg(Pro tein)
Storage time	<1 year	o-tRNA : ~1.5 month o-aaRS: ~ 2-4 weeks	N/A
o-tRNA maturation and nativity	Complete	Either synthetic or cell based but purified using organic solvents.	Complete
aaRS folding and nativity	Complete	Purification tags and processes needed	Complete
Use of insoluble molecules (PylRS derivatives)	Possible	Not reported	Possible
Reaction preparation time	~30 minutes	~1 hour	NA
No. of different component/processes (Levels of complexity)	3 (DNA, lysate and reaction buffer)	5 (DNA, lysate, Buffer, tRNA and aaRS). Last two items could go wrong both upstream and in downstream applications.	NA
Downstream processes of product	Instantly ready for immune assays, protein assays, chemical reactions, calorimetric assays and purification.		Needs to undergo lysis before ready for downstream.
Tracking kinetics of protein expression	Using fluorescent tags or calorimetric assays enable live tracking of expression kinetics		No kinetic tracking.
Reproducibility of results	High	Medium	High
Absolute protein yields	> 1 mg	> 1 mg	< 1 mg
Relative protein yields	~1mg/ml(reaction)	~1mg/ml(reaction)	0.02mg/ml(culture)
Scale-up	Complex – But have 2 components less to independently produce	Complex	Easy

	and scale up		
Simultaneous	Limitless, car	easily create arrays.	Limited –
reactions with			transformation,
different DNA			growth and sorting
templates			are needed.

Figure S1. Growth curves of the C321. Δ prfA strain and C321. Δ prfA cells transformed to express Pyl-OTS from plasmid pEVOL MmPylRS/MmPyltRNA ,using varying arabinose concentrations. Each data point on the graph represents 10 sample repeats.

From the results, it is clear that the growth curves of all OTS-transformed bacteria are close to identical under all inducer concentrations tested, and they grow at a rate similar to the parent GRO strain. The small difference in the growth between the transformed and parent strains could be explained by the energy/resources spent by the transformed bacteria to over-express the plasmid genes and the need to replicate those genes in high copy numbers. These results led us to conclude that no noticeable toxicity was caused by introduction of the Pyl-OTS into the GRO parental strain. This may be explained by the fact that the GRO strain, having all of its TAG codons removed, does not suffer from toxicity from due to read-through of any amber suppressors.

Growth measurements method. C321. $\Delta prfA$ and C321. $\Delta prfA$ pEVOL PylRS strains were incubated overnight in LB broth at 30°C and 275 rpm. Both cultures were then diluted 1/100 to OD₆₀₀ of ~ 0.1. The C321. $\Delta prfA$ pEVOL PylRS were then divided into 4 cultures each being inducted with different L-Arabinose (Chem-Impex Int'l Inc. , wood dale, IL) concentration; 0% (Not induced), 0.3% Arabinose, 0.5% Arabinose and 1% Arabinose. 100 µL of each diluted culture were added to Nunclon Delta Surface 96 well plate (Thermo Fisher Scientific Nunc, Roskilde, Denmark). OD₆₀₀ was measured every 15 min while incubating at 30°C with fast shaking in Synergy HT plate reader (Biotek, Winooski, VT). Data was collected during 15 h from 10 repeats of each culture.

Figure S2. N^{ϵ} -Boc-L-lysine Incorporation into deGFP while testing variousUAA (3) concentrations as can be seen at concentrations between 1-2 mM of (3) thereactionreachessimilarvalues.

Figure S3. Successful incorporation N^{*e*}-Propargyl-L-lysine in K136X (Panel A) and D193X (Panel B) using the endogenous and genetically expanded CFPS system, with the Pyl-OTS.

Figure S4. Upper panel; kinetics of N^{ϵ} -Propargyl-L-lysine (2) incorporation in multiple sites of deGFP while using the endogenous and genetically expanded, with the Pyl-OTS. Bottom panel: Anti GFP western blotting of the genetically expanded CFPS showing the successful incorporation of (2) in the each of the two sites individually and combined.

Figure S5. a) Detailed LC\MS data for WT deGFP (6xhis)

Coomassie stained SDS PAGE gel showing the purification results of the WT deGFP prior to LC/MS.

	deGFP WT				
-	F.T.	Wash	Elut1	Elut2	
-					
-			•		
~26kDa)		-		
	Species a				

Figure S6. b) Detailed LC\MS data for Y35(2) deGFP (6xhis)

Coomassie stained SDS PAGE gel showing the purification results of the Y35Prok deGFP prior to LC/MS.

deGFP Y35ProK

F.T.	Wash	Elut1	Elut2
	- whethere		
1			
-			

Figure S7. Calibration curve for correlating between EGFP florescence and protein concentration.

590nm/450nm Bradford calibration

Figure S8 - Bradford Calibration Curve.

The	Bradford	assay	results:
-----	----------	-------	----------

Bradford Assay Data	WT deGFP 1	WT deGFP 2	Y35(2) deGFP 1	Y35(2) deGFP 2
590nm/450nm	0.89	0.88	0.99	1.01
Protein concentration [ug/ml]	152.12	145.75	204.88	215.08
Averaged Concentration [ug/ml]	148.93		209.98	
Total protein in concentrated fraction	77.45		121.79	
total volume of CFPS reaction [uL]	456.00		456.00	
Original concentration [ug/uL]	0.17		0.27	
	Averaged			

Averaged concentration [mg/mL]

0.22

Genes and plasmid sequences used in this study:

deGFP:

deGFP (N terminus 6xhis)

Methanosarcina mazei PylRS:

ATGGATAAAAAAACCACTAAAACACTCTGATCTCTGCTACTGGTCTGTGGATGAGTCGTACCGGAACCATTCATAAAA TCAAACACCACGAGGTTAGCCGTTCGAAAATCTATATTGAGATGGCGTGTGGCGATCATCTGGTTGTGAACAATA GCCGCTCTTCTCGTACAGCACGTGCACTGCGTCACCACAAATATCGTAAAACCTGTAAACGTTGCCGTGTGTCCGA TGAGGATCTGAACAAATTCCTGACAAAAGCCAATGAGGACCAAACAAGCGTGAAAGTGAAAGTCGTTAGCGCTCC TACCCGTACTAAAAAAGCAATGCCGAAATCCGTTGCTCGTGCCCCTAAACCACTGGAAAACACTGAAGCAGCACA GGCACAGCCGTCTGGAAGCAAATTCTCTCCGGCCATTCCTGTTTCTACCCAGGAGTCCGTTTCTGTTCCAGCAAGT GTGAGCACCAGCATTAGCAGTATTAGCACCGGTGCCACCGCTAGCGCCCTGGTTAAAGGCAATACCAATCCGATT ACAAGCATGTCTGCCCCGGTTCAAGCATCAGCTCCAGCACTGACAAAATCCCAAACCGATCGTCTGGAGGTTCTGC TGAATCCGAAAGACGAAATCAGCCTGAATTCCGGCAAACCGTTTCGTGAACTGGAGAGCGAACTGCTGTCACGTC GTAAAAAAGACCTGCAACAAATCTATGCCGAAGAACGTGAGAACTATCTGGGGAAACTGGAACGTGAAATCACC CGCTTTTTCGTGGATCGTGGCTTTCTGGAGATCAAATCCCCCGATTCTGATTCCTCTGGAGTATATCGAGCGTATGGG GTTATCGTAAAGAGTCCGACGGTAAAGAACATCTGGAGGAGTTTACCATGCTGAACTTTTGCCAAATGGGTTCAG GTTGTACTCGTGAGAAACCTGGAAAGCATCATCACCGATTTTCTGAACCACCTGGGCATTGACTTCAAAATTGTGGG CCAATTCCGCTGGACCGTGAGTGGGGTATCGACAAACCGTGGATCGGAGCAGGATTCGGTCTGGAACGCCTGCTG AAAGTGAAACACGACTTCAAAAACATCAAACGTGCCGCCCGTTCTGAATCGTATTATAACGGGATTTCTACCAAC CTGTAA

*Methanosarcina mazei Pyl-tRNA*_{cua}^{pyl}:

TATGCATGGCGATATCTAATACGACTCACTATAGGAAACCTGATCATGTAGATCGAATGGACTCTAAATCCGTTCAGCCGGGTTAGATTCCCGGGGTTTCCGCCA

REFRENCES:

- Blight SK, Larue RC, Mahapatra A, Longstaff DG, Chang E, Zhao G, Kang PT, Green-Church KB, Chan MK, Krzycki J a. 2004. Direct charging of tRNA(CUA) with pyrrolysine in vitro and in vivo. *Nature* **431**:333–335.
- Herner A, Nikić I, Kállay M, Lemke E a, Kele P. 2013. A new family of bioorthogonally applicable fluorogenic labels. *Org. Biomol. Chem.* **11**:3297–3306.
- Lajoie M, Rovner A, Goodman D, Aerni H., Haimovich AD, Kuznetsov G, Mercer JA, Wang HH, Carr PA, Mosberg JA, Rohland N, Schultz PG, Jacobson JM, Rinehart J, Church GM, Isaacs FJ. 2013. Genomically recoded organisms expand biological functions. *Science* 342:357–360.
- Park H-S, Hohn MJ, Umehara T, Guo L-T, Osborne EM, Benner J, Noren CJ, Rinehart J, Söll D. 2011. Expanding the genetic code of Escherichia coli with phosphoserine. *Science* **333**:1151–1154.
- Phue J-N, Lee SJ, Trinh L, Shiloach J. 2008. Modified Escherichia coli B (BL21), a superior producer of plasmid DNA compared with Escherichia coli K (DH5alpha). *Biotechnol. Bioeng.* **101**:831–836.
- Ryu Y, Schultz PG. 2006. Efficient incorporation of unnatural amino acids into proteins in Escherichia coli. *Nat. Methods* **3**:263–266.
- Srinivasan G, James CM, Krzycki J a. 2002. Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA. *Science* **296**:1459–1462.
- Sun ZZ, Hayes C a, Shin J, Caschera F, Murray RM, Noireaux V. 2013. Protocols for implementing an escherichia coli based TX-TL cell-free expression system for synthetic biology. J. Vis. Exp. **79**:1–15.
- Taylor RG, Walker DC, McInnes RR. 1993. E.coli host strains significantly affect the quality of small scale plasmid DNA preparations used for sequencing. *Nucleic Acids Res.* **21**:1677–1678.
- Wang L, Zhang Z, Brock A, Schultz PG. 2003. Addition of the keto functional group to the genetic code of Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 100:56–61.
- Young TS, Ahmad I, Yin JA, Schultz PG. 2010. An enhanced system for unnatural amino acid mutagenesis in E. coli. J. Mol. Biol. **395**:361–374.