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In vitro implementation of robust gene regulation in
a synthetic biomolecular integral controller
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Feedback mechanisms play a critical role in the maintenance of cell homeostasis in the

presence of disturbances and uncertainties. Motivated by the need to tune the dynamics and

improve the robustness of gene circuits, biological engineers have proposed various designs

that mimic natural molecular feedback control mechanisms. However, practical and pre-

dictable implementations have proved challenging because of the complexity of synthesis and

analysis of complex biomolecular networks. Here, we analyze and experimentally validate a

synthetic biomolecular controller executed in vitro. The controller ensures that gene

expression rate tracks an externally imposed reference level, and achieves this goal even in

the presence of certain kinds of disturbances. Our design relies upon an analog of the well-

known principle of integral feedback in control theory. We implement the controller in an

Escherichia coli cell-free transcription-translation system, which allows rapid prototyping and

implementation. Modeling and theory guide experimental implementation with well-defined

operational predictability.
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Robustness against perturbations and uncertainties is fun-
damental to biological systems that continuously sense and
respond to their environment. At the cellular level, it is

often desired to maintain precise control over a variety of
molecular components and pathways to achieve complex beha-
viors that require the interaction of intracellular or extracellular
biomolecules1,2. This is often achieved by tightly regulating gene
expression in such a way that it follows a desired set point
independent of exogenous or endogenous disturbances. Feedback
is a mechanism that enables organisms to achieve reliable and
robust functionality3–7. Feedback mechanisms underlie home-
ostasis, a phenomenon in which physiological variables are con-
tinuously monitored and adjusted so as to maintain a desired
equilibrium value which is defined by a set point (also known as a
reference signal), in the presence of biological uncertainties that
may perturb the natural state of the system8–10.

Reference tracking in the presence of disturbances, a classical
objective in electrical and mechanical systems, is often solved by
incorporating integral feedback to control a variable of interest
(also known as a plant or process signal)11. In such a scheme, one
wants the plant signal to track a reference signal. This is achieved
by incorporating in the controller the mathematical integration of
the difference between the reference and the plant signal (the
error signal). The internal model principle in control theory
states, in essence, that the existence of an integrator in the control
loop is necessary for the tight regulation of the variable of interest
in the presence of constant disturbances or stimuli12. Inspired by
these ideas from engineering and control theory, there have been
several recent designs13–16 and implementations17–19 of biomo-
lecular integral feedback controllers. While these implementa-
tions provided a general framework to robustly regulate in vivo
biological processes, an alternative implementation is desirable, in
order to improve the robustness of synthetic biological processes
and specifically the cell-free reaction platform. In addition, the
cell-free reaction platform makes the design and implementation
of such a controller easier compared to in vivo systems. This is
mainly due to the limitations of quantitative predictive models for
the latter case. These limitations arise in large part from the
biological noise which is found in cellular systems, which makes it
hard to achieve precise control over model parameters, thus
complicating the design and feasibility of the system20–22. Plas-
mid copy number is also limited by the origin of replication,
decreasing the adjustability of experiments23.

In this work, we exploit the versatility of an all Escherichia coli
TXTL platform to prototype a biological controller circuit. TXTL
reactions contain the native transcription, translation, and
metabolic machineries24,25 required to achieve gene expression
over at least eight hours. As opposed to a living host, in a TXTL
reaction one can precisely set the concentrations and stoichio-
metries of DNA parts, and thus finely tune gene circuits easily.
TXTL reactions are typically performed at the microliter scale or
above, far from any biological noise, thus allowing flexibility in
designing and optimizing the genetic network25. Experimental
disturbances, such as those perturbing the amount of DNA or
other reaction components, can be carried out at any time. TXTL
reactions are executed in high-throughput, facilitating the rapid
characterization of dynamic circuits. By virtue of such advantages,
several synthetic gene circuits have been implemented in TXTL
with a successful modeling framework27–30.

In this article, we construct an in vitro synthetic biomolecular
integral controller that precisely controls the protein production
rate of an output gene. Our strategy relies on a molecular
sequestration reaction, which is an instantiation of the innovative
antithetic integral feedback paradigm introduced by Briat, Gupta,
and Khammash13, who showed that this architecture realizes
integral control and achieves robust tracking. To realize a cell-free

biological controller, we exploit the natural interaction between
the E. coli σ28 and the anti-σ28 factor31. Recently, a similar con-
troller has been reported that uses the same molecular mechan-
ism to realize integral feedback in E. coli18. In this work, we
demonstrate that the output of the controller, which is realized
using the TXTL toolbox, tracks the reference signal, meaning in
this paper that it is linearly proportional to the input; moreover,
we show that this happens for a large dynamic range of inputs.
This tracking behavior is possible only in the closed-loop con-
figuration (when the sequestration reaction is active), and not in
open loop. We develop an ordinary differential equation (ODE)
model and perform systematic TXTL experiments in order to
parameterize and validate the model. We then use the para-
meterized model in order to successfully predict the controller
response in different reaction conditions. When certain dis-
turbances are added in the biochemical species as local dis-
turbances, or in the reaction condition as a global disturbance,
only the closed-loop controller enables the output to almost reject
the disturbance’s effect on the output. Our results demonstrate
that our synthetic biomolecular controller is capable of regulating
the gene expression rate robustly in an E. coli TXTL toolbox. We
anticipate that such an approach could be useful for diagnostics
applications32, for constructing dynamical systems in vitro33 or
for programming synthetic cell systems34,35.

Results
Designing an integral feedback controller. Our primary goal is
to construct a genetic network which can accurately regulate the
protein production rate of a target gene. Specifically, we wish to
achieve reference tracking, meaning that the production rate
(output) of a desired protein follows a reference signal linearly,
for a large dynamic range of input values. We call tracking robust
if the output tracks the reference signal even in the presence of
(certain kinds of) disturbances and this behavior is maintained
independently of changes in reference values over the course of
the reaction.

In electrical and mechanical control systems, integral feedback
controllers are routinely used in order to achieve robust reference
tracking in the presence of perturbations and uncertainties.
Motivated by this analogy, various possible designs of such
controllers have been discussed substantially in the context of
biological systems13–19,27. The present work is inspired by our
previous work27, in which we introduced a computational design
based on RNA-based controllers but in which no experimental
validation was provided. Here, we start from that design,
modifying it to allow for direct control over genetic expression
and provide an experimental validation. In this approach, the
controller enables the output signal to robustly track the reference
signal, which is a scaled value of an input PX (Fig. 1a), and
representing input gene copy number. To determine the deviation
of the output signal from the reference signal, a comparison
between both is required without affecting their activity. This
requires that the reference and the output signals must be sensed
internally using biochemical sensors. We, therefore, use a
protein molecule X, which corresponds to the reference signal
and is assumed to be proportional to the input PX, and a
protein molecule Y, which corresponds to the output signal and is
regulated and proportional to a plant signal V. This allows to
realize the error computation while avoiding depletion of the
reference and the plant signals. In informal terms, we may think
of the concentration of free molecules X, which we denote as XR

(the R for remaining after binding to Y) as an error signal which
represents the difference X−Y and influences the output to
correct deviations of the output signal from the reference signal.
The output block, which is not involved in the closed-loop
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dynamics, acts as a proxy to read the plant signal and produce an
external read-out signal (see Supplementary Note 1).

Our biomolecular implementation of an integral feedback
controller requires three genes: an input gene x, under the
promoter PX, a target gene y, under the promoter Ptot

Y and an
output gene z, under the promoter Ptot

Z (Fig. 1b). Genes x, y, and z
are sensed using their respective encoded proteins X, Y, and Z via
a combination of transcription and translation reactions. An error
computation is achieved through a molecular sequestration
between X and Y, which represent PX and V, respectively, in
such a manner that when X binds to Y or vice versa, both proteins
become biologically inactive (a phenomenon, also known as
annihilation)13. We then used the free X (not bound to Y) as a
transcriptional activator that binds at the promoter regions of y
and z genes. In this reaction, inactive promoters PY and PZ switch
to active promoters Pþ

Y and Pþ
Z states respectively, leading to an

increased production rate of the respective encoded proteins. It is
essential that the activated transcription rate from the genes y and
z must be much higher than their basal expression, so that the
production rate of Y and Z should be overall regulated by the
error signal XR. Since the plant signal (V is a mRNA) is not a

readable quantity, and Y gets depleted in the sequestration
reactions, we use the concentration of another protein G (e.g., a
reporter protein), which is expressed by the output gene z, as a
read-out signal to record the controller activity. The production
rate of protein G (considered as an output Z) is used as a reliable
comparison metric. To ensure that the output signal truly
represents the plant signal, and for that Pþ

Z must truly represent
Pþ
Y . In order to implement this, it is necessary that the same

promoter must be used by the y and z genes, and the amounts of
Ptot
Y and Ptot

Z should be identical26. Note that x, y, and z have the
same concentrations and correspond to the biochemical species
PX, Ptot

Y , and Ptot
Z , respectively.

Here and elsewhere, the term closed-loop configuration means
that the feedback is present through the sequestration reaction;
otherwise, when the feedback mechanism is not present, the
controller is referred to as in the open-loop configuration. We
establish that reference tracking is only possible in the closed-loop
case, where the output linearly depends on PX (Fig. 1c). In the
open-loop case, the output depends nonlinearly on PX and Ptot

Z ,
which means that, according to our definition, the open-loop
system is unable to track the reference signal. Because the error
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Fig. 1 The synthetic biological integral controller. a Block diagram of a typical closed-loop controller. b Design of the synthetic biological integral
controller, where the color coding corresponds to the blocks shown in a. The reference is set by the input DNA PX and the plant signal V (mRNA of gene y)
is measured through the expression of another gene z, which encodes for a protein Z. Error computation is achieved through a molecular sequestration
reaction between the proteins X and Y. Here the red-color cross represents the open-loop configuration of the controller, which results when the feedback
signal Y is absent. c In the closed-loop configuration, the error criterion is the difference between scaled versions of the input PX and the plant signal to be
regulated, V. In the actual controller implementation, this role is played by the free amount of the protein X, which we denote as XR because we think of it as
what remains after binding to Y (and to promoter sites). To produce an output (Z) that is independent of the disturbances in PtotY and PtotZ , the error signal is
integrated (see Supplementary Note 1). The assumptions made to derive this expression are mentioned in Supplementary Note 1 where it is also shown
that the controller output (Z) linearly depends on the plant signal at the steady state. In the absence of the feedback the output depends nonlinearly on PX
and PtotZ such that any disturbance in PtotZ may perturb the output. d Overview of the E. coli cell-free toolbox for prototyping and executing parts and circuits
in vitro. e Experimental implementation of the integral controller. Three plasmids are used, P70a-σ28, expressing the E. coli σ28 (X) from a σ70 promoter (PX),
P28a-FlgM, expressing the anti-σ28 factor (Y) from a σ28 promoter ðPtotY Þ, and P28a-deGFP, expressing the reporter deGFP (G) from a σ28 promoter ðPtotZ Þ. In
the open-loop controller, instead of the anti-σ28 factor (FlgM), mSA is expressed, which is not sequestered by σ28, nor does it directly affect any reaction
rates (see Methods). The mSA control gene promoter is denoted as PtotYC.
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signal (XR) is mathematically integrated over time in the closed-
loop case, the output should be able to track the reference signal
even when appropriately placed disturbances are added to the
genetic network (Fig. 1a, c).

For a case when the reference signal is larger than the output
signal, the error signal increases the production of the output Z.
On the other hand, when the output signal is larger than the
reference signal, free Y sequesters X to reduce the output. One of
the key reasons that this controller is able to improve
substantially upon that in ref. 27 is that it implements an effective
error computation through protein interactions; in contrast,
RNA-based designs suffer from the fact that RNAs degrade much
faster than proteins, making an effective error computation very
hard to implement experimentally36. In contrast, the degradation
of the proteins used in this work can be ignored as no degradation
tags were associated with them. However, while realizing the
integral controller in vivo, the adverse effect of degradation on
reference tracking due to cell dilution should be considered21.

To test the controller experimentally in E. coli TXTL toolbox
(Fig. 1d), we employed three plasmids (Fig. 1e): P70a-σ28,
expressing E. coli σ28 from a σ70 promoter; P28a-FlgM, expressing
the anti-σ28 factor (also known as FlgM) from a σ28 promoter; and
P28a-deGFP, expressing the reporter deGFP from a σ28 promoter.
In the open-loop controller, gene expressing FlgM is replaced by a
gene expressing mSA (same protein size), which cannot sequester
with σ28, nor does it directly affect any reaction rates (see
Methods). Here and elsewhere, for simplification, σ28, anti-σ28
factor (FlgM), and immature deGFP are denoted as X, Y, and Z,
while promoters P70a and P28a are denoted as PX and Ptot

Y (same as
Ptot
Z ), respectively, and the mSA control gene is denoted as yc and

the respective promoter as Ptot
YC .

The closed-loop controller tracks the reference signal. Our first
goal was to establish that when the controller operates in the
closed-loop configuration, the output of the controller (Z) follows
linearly the changes in the concentration of input PX, thus
tracking the reference signal. A nonlinear dependence of the
output on PX would suggest otherwise. To test this in TXTL
reactions, we added 0.1–0.7 nM PX and 1 nM each of Ptot

Z and
either Ptot

YCfor the open-loop operation (Fig. 2a) or Ptot
Y for the

closed-loop operation (Fig. 2b). In our implementation, the
controller’s output is an immature version of the reporter protein
deGFP, and its matured version, which is fluorescent, is con-
sidered as a read-out signal (G). Since the fluorescent deGFP has
no degradation tag; consequently, we cannot observe a steady-
state behavior in the measured responses. Therefore, to be able to
compare the open and closed-loop responses accurately, we
determined the slopes of the measured deGFP signals (Fig. 2c, d),
which is also referred to as the production rate of deGFP. It can
be shown that deGFP slope is a scaled version of Z, which follows
the plant signal linearly at the steady-state in the closed-loop
configuration (Supplementary Note 1). In the open-loop case, we
found that changes in the deGFP slopes depend nonlinearly on
the changes in the input concentration of PX (Fig. 2e), suggesting
that the output is unable to track the reference signal over the
tested range. In contrast, the closed-loop endpoint deGFP slopes
were linearly proportional to the concentration of PX (Fig. 2f),
suggesting reference tracking.

The output of the closed-loop controller should be able to
follow the changes in input signal linearly independent of the
time when it is modified. To test this capability, we performed a
step change in the input PX concentration during the course of
the reaction. For that, we added different amounts of PX to TXTL
reactions in the open-loop (Supplementary Fig. 1a, b) and closed-
loop (Supplementary Fig. 1c, d) system after four hours of

incubation with 1 nM each of Ptot
Z and either Ptot

YC or Ptot
Y ,

respectively. As mentioned earlier, we observed that the
controller’s output follows linearly the input only when operated
in the closed-loop configuration (Fig. 2g, h). Note that the deGFP
produced in the closed-loop configuration is much smaller than
that produced in the open-loop configuration because the
activator needed to express the deGFP is sequestered only in
the closed-loop configuration.

The open-loop controller output is unable to track the input
signal. One possibility is that this observation can be explained by
the higher output levels in the open-loop case. To eliminate this
possibility, we tested the controller operation in a different
reaction condition, by ensuring that the open-loop output levels
are in close proximity to the closed-loop output levels (shown in
Fig. 2b) at the same input PX values. We found that the open-loop
controller output remains nonlinear as a function of PX, even
when the open and closed-loop output levels are similar
(Supplementary Fig. 2; Fig. 2f). This provides a controlled
comparison and shows that feedback is responsible for the
reference tracking behavior. As a control, we also tested that
changes in the concentration of Ptot

YC have no effect on the deGFP
slopes (Supplementary Fig. 3), confirming that the different
version of Y that is expressed by yc gene does not interact with X.
In contrast, when we increased the concentration of Ptot

Y , from 0
to 1 nM in the presence of PX and PZ, the deGFP slopes reduced
significantly, suggesting that the sequestration reaction is being
actively involved in regulating the error signal and thereby the
output activity (Supplementary Fig. 4). We also found that in the
absence of PX, deGFP is not produced (Supplementary Fig. 5),
confirming that the production of Y and Z are fully governed by
the error signal through the activation reaction.

These experimental observations agree with the expected
controller operation. When X is larger than Y (i.e., the output
is lagging behind the reference). The error signal increases the
production of Y and Z. As more Y is available in the reaction to
sequester with X, X and Y converge to specific values that would
allow Z to follow the reference signal. In the absence of the
sequestration reaction, error computation is absent (no feedback)
and so X directly regulates Z production without comparing with
the reference signal.

Mathematical model and parameterization. To understand the
controller operation, we developed a simple coarse-grained model
that captures the dynamic response of the controller in both open
and closed-loop configurations (Fig. 3a). For that, we consider the
synthesis of each protein as a two-step reaction: a transcription
reaction for mRNA synthesis and then a translation reaction for
the corresponding protein synthesis. The parameters α and β are
transcription and translation rates, respectively. Here and else-
where, subscripts to the parameters indicate the corresponding
species. Each mRNA species (U, V, and W) has a degradation rate
denoted as δ while we ignore the protein degradation rate36. The
parameter κ is the sequestration rate. Transcriptional activation is
modeled as a one-step reaction, where X binds to the promoters PY
and PZ separately at a rate of ω and dissociates at a rate of ν. In the
activated state, these genes produce Y and Z proteins at an
increased transcription rate, denoted as α+. Considering the mass-
conservation, we assume that Ptot

Y ¼ PY þ Pþ
Y andPtot

Z ¼ PZ þ Pþ
Z

at all times. An additional reaction is added into the model to
account for the maturation of newly synthesized immature deGFP
(Z) into a fluorescent deGFP (G)25,33, which is the read-out signal
(Fig. 3a). We have also added a reverse sequestration reaction that
allow sequestered X and Y to dissociate at a rate denoted as κi.
From chemical reactions, we built an ODE model (shown in
Fig. 3b) to determine the response of the controller over time.
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An accurate representation of a system model requires
determining specific parameter values at which the model
quantitatively follows the system dynamics. However, parameter
estimation can be nontrivial, as there can be multiple sets of
parameter values that may vary by several orders of magnitude
and could still fit the measured data. Therefore, to simplify the
problem, we isolated the measured responses into two sets, in
such a manner that we required fewer parameters to fit a
particular set of experimental data. For this, we first found the
model parameter values that provided the best fit to the measured
open-loop response, since the number of parameters involved in
the open-loop case are less than in the closed-loop case (see
Methods). We then used these parameter values to fit the closed-
loop response while allowing only the remaining parameters to
vary (see Methods). Moreover, we started the model fitting
manually with an initial guess of parameters derived from the
literature24–30,36. Once we found the possible values that provide
a qualitative agreement between the model and the measured

response, we used an iterative least-squares fitting procedure to
find a range of parameter values that gave us the best fit (see
Methods). The means of the resulting parameters (Table 1) were
then used along with the ODE model (Fig. 3b) to calculate the
mean trajectories with 95% confidence intervals (Fig. 3c, d). A
comparison of model response with the deGFP slopes is shown in
Supplementary Fig. 6. Histograms of the input and estimated
parameter distributions are shown in Supplementary Fig. 7.

To cross-validate the parameterized model, we predicted the
controller response for a different setting of input conditions. For
that, the concentration of PX was increased from 0 nM to
0.1–0.7 nM (in a step manner) after 2 h of incubation in the
presence of initial 0.7 nM of Ptot

Y and Ptot
Z each (Fig. 4a, b;

Supplementary Fig. 8). We found that the predicted responses
followed the measured responses closely. It should be noted that
the reason, in this study, we have limited to model the measured
dynamic trajectories for up to 8 h. This is because experimen-
tally, after 8 h, we observed the effects of resource limitations
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(Supplementary Fig. 9) and the ODE model shown in Fig. 3b,
assumes an unlimited energy source and therefore ignores the
experimental results when that assumption no longer holds.

Model simplification. To get a better insight into the controller
response, further simplification of the proposed model is
required. For that, based on the extracted parameter values, we
sought to reduce the number of variables in the model while still
capturing the essential dynamics of the controller. From the
extracted parameter values, we observed that the basal expression

of y and z genes is almost negligible; therefore, we set αV and αW
to zero in the simplified model. As the transcriptional activation
reaction is much faster than the other reactions involved in the
reaction network, we used a quasi-steady state approximation to
replace the ODEs of Pþ

Y and Pþ
Z by their steady-state expressions

(see Supplementary Note 1). As the RNA dynamics is much faster
than the protein dynamics (due to the faster RNA degradation
rates), a similar approximation was used to model the synthesis of
X and Z using single reactions for each, while keeping the two-
step synthesis of Y to ensure that we consider an appropriate
delay in the overall system dynamics (Supplementary Fig. 10)37.
We also ignored the reverse sequestration reaction (κi) assuming
it has a limited impact on the dynamics of the deGFP (Supple-
mentary Fig. 11). This leads to a simplified model (shown in
Fig. 4c), which can produce a dynamic response similar to that of
the original model (Supplementary Fig. 12).

We now use the simplified model to determine analytically
how the output depends on the reaction parameters and the
input. As mentioned earlier, because the reporter protein deGFP
(G) has no degradation tag, we opted to analyze the slope of
deGFP (scaled value of Z), and a steady-state response can be
seen for the closed-loop controller (Fig. 2d). However, in the
given implementation, it is not possible to observe a steady-state
response of Z in the open-loop configuration (Fig. 2c). This is
because as the sequestration reaction is absent in the open-loop
case, X continues to accumulate over time and so does Z
(Supplementary Fig. 13; Fig. 2c). In contrast, due to the
sequestration reaction in the closed-loop operation, X attains a
steady-state, which makes Z to attain a steady-state as well
(Supplementary Fig. 14; Fig. 2d).

To determine an approximate analytical expression for the slope
of deGFP, we used the simplified model to obtain an approximate
analytical solution of Z (see Supplementary Note 1). We then
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b ODE model. Here U, V, and W are the translationally initiated mRNA of the X, Y, and Z proteins, respectively. The additional reaction was added into the
model to consider the maturation of immature deGFP into a fluorescent deGFP (G). Details on how the PtotY and PtotZ promoters switch from the inactive (PY,
PZ) to active ðPþY ; PþZ Þ states are shown alongside. Note that while using the ODE model to study the controller dynamics, PY and PZ were replaced with
PtotY � PþY and PtotZ � PþZ respectively. c, d Comparing the measured deGFP response (solid lines) with the mean of the best-fitted simulation results (dashed
lines) for the c open-loop and d closed-loop cases. The ODE model was used to calculate the controller response while initial concentrations of PtotY and PtotZ

were 1 nM each. Note for the open-loop response αV, αV+, δV, βY, κ, κi, and PtotY were set to zero. Least squares fitting was used to generate the best-fit
model response at different initial guesses of the reaction parameters (see Methods). Experimentally observed error bars are shown in the shaded region
while the mean simulated trajectories (dashed line) are shown here within 95% confidence intervals. N= 1000. Error bars are from the SEM of at least
three repeats. Source data are provided as a Source Data file.

Table 1 Estimated model parameters obtained from the least
squares fitting for the ODE model shown in Fig. 3b.

Parameters Values Error Units

αU 0.60 ± 0.01 s−1

αV 2.75 × 10−5 ± 8.35 × 10−7 s−1

αV+ 0.51 ± 0.0123 s−1

αW 3.68 × 10−7 ± 9.76 × 10−9 s−1

αW+ 0.78 ± 0.0013 s−1

δU 0.00501 ± 7.23 × 10−5 s−1

δV 0.00026 ± 2.57 × 10−6 s−1

δW 0.00109 ± 3.05 × 10−6 s−1

βX 0.00046 ± 1.41 × 10−5 s−1

βY 0.0018 ± 4.10 × 10−5 s−1

βZ 0.00098 ± 1.53 × 10−6 s−1

κ 8.99 × 104 ± 8.88 × 102 M−1 s−1

κi 1.0 × 10−4 ± 1.42 × 10−6 s−1

ω 8.02 × 105 ± 7.34 × 103 M−1 s−1

ν 1.54 ± 0.07 s−1

ϒG 1.95 × 10−3 ± 4.86 × 10−6 s−1

Note for the open-loop response αV, αV+, δV, βY, κ, κi, and PYtot were set to zero. The error values
were determined using the standard error of the mean. N= 1000
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analytically calculated the time derivative of G for the open and
closed-loop cases (Fig. 4d). The analytical solution follows the
response of the original model closely at different reaction
conditions (Fig. 4e, f; Supplementary Fig. 15), and thus, validating
our approach. Moreover, we found that the time derivative of G
(same as slope of deGFP) follows the input PX linearly only in the
closed-loop case as long as there are enough promoter sites are
available on y and z genes. This is due to the fact that in the closed-
loop configuration, Z is independent of the promoter activity of z
gene as long as X ≫ ω/ν is not valid. This is considered as a
fundamental limit of the controller to track the reference signal
robustly. In contrast, in the open-loop case, as the sequestration
reaction is absent, production of Z directly depends on the
promoter activity of z gene which causes a nonlinear dependency
of Z on X, thereby on PX (Fig. 4d). In the closed-loop case when
X ≫ ω/ν, Z converges to a saturation. We verified these
conclusions using the numerical simulations (see Supplementary
Fig. 16). Moreover, the closed-loop controller capability to track
the reference signal should be independent of the absolute value of
the output when X ≫ ω/ν is not valid. To test this, we conducted
numerical simulations at different initial DNA concentrations
values for the open and closed-loop cases in such a manner that
the controller’s output remains in the proximity in these two cases.
We observed linear relation between the input PX and the output
only for the closed-loop case (Supplementary Fig. 17).

Further insight into the controller operation can be gained by
analyzing the simplified model to determine how the error signal
is processed in the closed-loop configuration of the controller.
The analytical expression for the error signal clearly shows that it
is integrated mathematically by the controller (see Supplementary
Note 1). We then further validate the conditions under which Z
faithfully tracks the plant signal, which ensures accurate reading
of the controller dynamics (see Supplementary Note 1).

Closed-loop control enables disturbance rejection. One of the
main theoretical advantages of integral feedback controllers is
their ability to reduce the effect on the output of certain constant
disturbances on the variable of interest9. This is due to the
effective error computation with an integral operation that allows
the controller to maintain the desired output even when a dis-
turbance affects the system. In the aforementioned section, we
showed that the implemented controller can be interpreted as an
integral feedback mechanism (see Supplementary Note 1).
Therefore, we expect that the closed-loop system is able to sup-
press disturbances in an appropriate sense. To test this, we
introduced disturbances in the concentration of the biochemical
species Ptot

Y and Ptot
Z . In practical settings, variation in the DNA

concentration is one of the most biologically relevant parameters.
This is because in vivo gene concentration can vary significantly
due to fluctuations in plasmid copy number38, and several designs
have been proposed in order to ameliorate the effect of copy
number variation39,40. Notably, the TXTL reaction platform
allows us to design such an experiment, where DNA template
concentrations can be changed at any time during the course of a
reaction due to the TXTL reaction settings.

In this design, the steady-state value of the closed-loop
controller’s output is independent of the amount of y and z
genes (in Fig. 4d), and this implies that any disturbances in these
species should not perturb the deGFP response when the
controller is operated only in the closed-loop configuration. To
test this, we first used the ODE model (Fig. 3b) to predict the
controller response in the open-loop and closed-loop configura-
tions where the concentrations of Ptot

Y and Ptot
Z were varied from

0.2 to 0.7 nM, keeping a fixed 0.2 nM initial PX. We observed a
less than ~1.2-fold variation in the deGFP slopes for the closed-
loop case, compared to ~4-fold variation in the open-loop case
(Supplementary Fig. 18). To understand these further, we
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conducted numerical simulations and analyzed the dynamics of
each species involved in the genetic network. We found that in
the closed-loop operation, an increase in Ptot

Z increases the
amount of Y, but as more Y is available to sequester X, less free X
(not bound to Y) is available to activate the production of Y and
Z. Even though Ptot

Z was increased, free X is reduced such that the
reporter protein G (and also the output Z) remains almost the
same, independently of the amount of Ptot

Z (Supplementary
Fig. 19). For the open-loop case, as there is no feedback, an
increase in Ptot

Z significantly increases the production rate of G
(Supplementary Fig. 20).

Encouraged by these results, we experimentally tested the same
conditions in TXTL reactions. We added 0.2 nM PX and
increasing concentrations of Ptot

Y ¼ Ptot
Z , from 0.2 nM to 0.7 nM

to reactions, and tracked the deGFP signal over time for the open-
loop (Fig. 5a) and the closed-loop (Fig. 5b) configurations. In the

open-loop case, the output signal increased by more than ~4.5-
fold with the increasing concentration of Ptot

Yc ¼ Ptot
Z due to the

lack of feedback (Fig. 5c). However, in the closed-loop case, the
output signal was increased by only ~1.4-fold with increasing
Ptot
Y ¼ Ptot

Z , thus confirming that the controller suppressed the
disturbance in their concentrations (Fig. 5d), as predicted by
integral feedback theory.

Similarly to reference tracking, rejection of disturbances should
be independent of the time when they are introduced in the
system. To test this, we characterized the controller response to a
step change in the concentrations of Ptot

Y and Ptot
Z as disturbances.

We started the reaction with PX, Ptot
YC and Ptot

Z concentrations each
set to 0.2 nM, and after 4 h of incubation, additional Ptot

YC and Ptot
Z

were added (see Methods) (Fig. 5e). For the closed-loop case,
instead of Ptot

YC , P
tot
Y was added in the same amounts (Fig. 5f). The

output was changed by less than ~1.1-fold in the presence of the
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disturbances only in the closed-loop case, as expected based on
our understanding of the controller compared to ~2.7-fold
change in the open-loop case (Fig. 5g, h). It should be noted that
cases where the disturbances were added after 4 h of the reaction
(Fig. 5g, h), a lower deGFP expression results, due to the limited
amount of Ptot

Y and Ptot
Z compared to when the disturbances were

added at the beginning of the reaction (Fig. 5c, d) for the same
concentration of PX, Ptot

Y and Ptot
Z . We also tested the controller’s

response for a wide range of disturbances when different initial
concentrations of DNA were used, and the disturbance was added
in different amounts (see Supplementary Figs. 21 and 22). In each
case, we found a similar robust controller response in the closed-
loop settings. Moreover, the open-loop analytical expression
(Fig. 4d) suggested that the open-loop controller cannot suppress
the disturbances independently of the absolute value of the
output. We, therefore, tested the open-loop controller operation
at a lower initial PX value to produce an output response that is
much lower than the closed-loop response shown in Fig. 5a while
adding the same amount of disturbance in Ptot

YC and Ptot
Z . We

observed that the open-loop output level was increased by ~4-fold
with the increase in DNA concentration and thus further
validating the mathematical model of the controller (see
Supplementary Fig. 23).

Finally, we tested the operation of the controller subject to a
global perturbation, such as a variation in a specific environ-
mental condition that potentially affects several parameters
simultaneously. One of such most natural global perturbations
is variation in temperature. We, therefore, carried an experiment
where the controller response was recorded at three different
temperatures (29 °C, 33 °C, and 37 °C) in the open and closed-
loop configurations (Fig. 6; Supplementary Fig. 25). To obtain
similar output levels in the open-loop case as in the closed-loop
case, different initial values of Ptot

Z (same as Ptot
YC and Ptot

Y for open-

loop and closed-loop cases, respectively) were used while keeping
the same input PX values. We found that our controller is
strikingly capable of suppressing the global disturbance caused by
the change in the reaction temperature: while the open-loop
system leads to a ~7-fold change in response, the closed-loop
system only has a ~1.2-fold change (Fig. 6c, d). Similar results
were observed irrespective of the absolute value of the open-loop
controller’s output (Supplementary Fig. 26), and at a different
initial concentration of the input PX (Supplementary Fig. 27).
These results suggest that our closed-loop controller might lead to
improved robustness of in vitro biomolecular processes with
respect to changes in temperature.

Discussion
In this work, we constructed a synthetic biomolecular integral
controller circuit for effective and robust control of the protein
production rate of an output gene. We demonstrated that in the
closed-loop configuration, the output followed the input signal
linearly over a wide range of conditions, even under step changes
in input. By harnessing the natural interaction between the σ28
and the anti-σ28 factor a strong sequestration reaction is realized
that allowed an effective computation of the error between the
reference and the output signal. This error signal is then inte-
grated mathematically. Because of this, and as predicted by the-
ory, the closed-loop controller suppresses the disturbances’ effect
on the output, which were introduced in the biochemical species
as a local disturbance or in the reaction environment as a global
disturbance. In contrast, the open-loop controller is unable to
suppress the disturbances, as noticed by the large variations of the
output signal. This illustrates the advantage of closed-loop
architectures, where an error computation is employed.

Mathematical models play an important role in understanding
complex synthetic networks. They provide insight into the
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operation of networks, and serve to guide experimentation. Here,
we developed an ODE model for the integral controller that
quantitatively explains the transient as well as the steady-state
behavior of all the species involved in the system. We were able to
obtain an effective model parameterization, by isolating para-
meters for each set of experimental data before finding their
optimum values to achieve the best fit. Even though the presented
model is a coarse-grained mechanistic model, it enabled us to
explain the measured response of the controller, and can also
predict dynamic trajectories for a wide range of operating con-
ditions accurately. Based on the extracted parameter values, we
derived a simplified version of the original model that is as
effective as the original model and can be used for further the-
oretical analysis in order to gain deeper insight into the operation
of the controller.

In this work, we assumed that the TXTL reactions have an
unlimited source of energy for the first 8 h in the range of plasmid
concentrations used. This allowed us to ignore the depletion of
energy resources while building the ODE model of the controller.
After 8 h, we observed a reduction in deGFP expression, sug-
gesting a decrease of transcription and translation rates consistent
with the depletion of energy resources and biochemical changes
such as pH drop25. To account for the resource competition and
depletion in the measured response, we were able to modify the
ODE model in a such a manner that it was able to follow the
experimental data beyond 8 h (see Supplementary Note 2). Future
work could incorporate further validation and extension of this
model. For example, any cell-free reaction kit has a lifetime as it
accumulates byproducts and consumes the nutrients (ribonu-
cleosides and amino acids) even in the absence of any DNA41.
Because of this reason, we had to add the DNA before 6 h after
the beginning of the reaction. Moreover, because the controller
was implemented in a TXTL reaction platform at the scale of a
few microliters, a deterministic model was used while ignoring
the biological noise. For in vivo applications, it may be desirable
to extend the deterministic model to a stochastic model to con-
sider intrinsic biological noise38.

We used a molecular sequestration reaction to implement the
error computation. Previous models used similar approaches to
realize closed-loop controllers for reference tracking and dis-
turbance rejection13–18. In particular, recent experimental work
demonstrated new capabilities of the closed-loop controller17–19.
Our design, while related to those in13,17,18,27, has advantageous
features which allowed us to carry out experimentation, much
beyond what was previously possible, with variations in para-
meters and conditions. In addition, our results are unique in the
sense that we have a quantitatively well-characterized controller
that is constructed in all E. coli TXTL system, where biological
noise is negligible compared to in vivo implementations. In the
latter, biological noise plays a non-negligible role in governing the
system dynamics18. Because of this, we cannot only precisely
regulate gene expression rate, but can also accurately predict the
dynamic response of the integral controller. Our controller
design, which uses a gene network, can in principle also be
applied to regulate any other genes of interest, such as those
involved in controlling metabolic rates, a task which might not be
feasible using a post-transcriptional based controller13. We also
demonstrate disturbance rejection capabilities of our controller
when a constant or a step disturbance is added to DNA con-
centration (Ptot

Y and Ptot
Z ); disturbances in DNA concentration are

realistic because they typically arise in in vivo or in vitro genetic
networks. Such experiments are not feasible using an in vivo
reaction platform, thereby limiting the usage of the controller in
rapid prototyping and implementation.

Notably, for the current architecture, disturbance rejection is
only possible when perturbations do not directly influence the

parameters involved in governing the production rate of the
reporter protein and the protein X is expressed at values that are
below or of order ν/ω (shown in Fig. 4d). These parameters are
the concentration of y and z genes, and the association (ω) and
dissociation (ν) rates. We have shown the controller capability to
minimize the effect of the disturbance added on the concentration
of Ptot

Y and PZtot. To demonstrate robustness with respect to the
transcriptional activation rates, we have conducted in-silico
experiments in which we modified ω and ν parameters from
their nominal values and observed a small variation in the closed-
loop output compared to a significant variation in the open-loop
output (Supplementary Figs. 30 and 31).

While adding disturbances in the biochemical species or in the
reaction parameters, we observed that the steady-state output
value was perturbed by a non-negligible amount (>10%) at 8 h.
This may be due to the limited effectiveness of the error com-
putation. In our design, effective error computation requires that
X sequesters Y rapidly compared to the other reactions which use
X, namely the two transcriptional activation reactions. If the
consumption of X is not dominated by the sequestration reaction
compared to the retroactivity effect42 due to the transcriptional
activation reactions, the controller’s performance is degraded,
and the output has a limited capacity to track the reference signal
accurately on the face of disturbances. We, therefore, hypothe-
sized that in the current controller, the effect of the disturbance
on the output can be reduced but not completely rejected
because of the slight ineffectiveness of error computation, which
is due to the limited sequestration reaction rate constant. To test
this, we have conducted in-silico experiments in which we
increased the molecular sequestration rate while keeping the
nominal transcriptional activation rate fixed and found that the
variation in the steady-state output was reduced from 10% to
<0.5% at 12 h (Supplementary Fig. 32a). Alternatively, when we
increased the transcription activation rate while keeping the
nominal sequestration rate fixed, the steady-state output was
increased from 10% to ~30% as a function of PYtot and
PZtot (Supplementary Fig. 32b).

It is important to note that our controller uses the expression
of gene z as a read-out signal. Therefore, in order to ensure that
the plant signal is recorded accurately through Z, the con-
centration of gene z must be the same as that of gene y ðPtot

Y ¼
Ptot
Z Þ and the same promoters must be used on y and z genes so

that the association and dissociation rates for the transactional
activator are the same. These conditions ensure that at any time
during the reaction, Pþ

Z ¼ Pþ
Y . To achieve this operating condi-

tion in vivo, Y and Z could be expressed on the same operon,
controlled by a single promoter.

Finally, in this work, we demonstrated that the closed-loop
controller can robustly control the single gene expression rate of
the deGFP fluorescent reporter protein taken as a model process
to be controlled. However, we anticipate that the controller design
could be extended to tightly regulate multiple genes that encode
other biologically relevant proteins simultaneously or could be
employed within a complex network system where multiple
processes required tight regulation to improve robustness and
performance of the network.

Molecular controllers capable of robust gene regulation are
needed in synthetic biology in order to implement more complex
circuit networks. The well-characterized and rationally imple-
mented synthetic integral feedback controller we presented here is
capable of addressing these challenges to advance biological
engineering, and could lead to the development of powerful,
synthetic network systems capable of achieving complexity
similar to that found at the cellular level, to develop cell-free
applications such as calibrated biomanufacturing or program-
ming synthetic cells for specific tasks.
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Methods
Mathematical modeling and parameter estimation. The simulated response of
the controller was determined by numerically integrating ODE models (Fig. 3b)
using the MATLAB ode23s solver unless otherwise specified. Initial conditions for
each molecular species are described in the figure captions, and the values of
reaction parameters are shown in Table 1. For the cases where there is a step
change in the DNA concentration over the course of the reaction, similar settings
were used to determine the model response numerically.

For parameter estimation, first we found initial guesses of parameter values that
qualitatively agreed with the measured open-loop response. We then randomly
sampled a set of input parameters from a uniform distribution within a bounded
interval (upper and lower bounds of 15% each) centered around the initial guess
values. This input set of parameters was then optimized to minimize the error
between the model and measured open-loop responses for all five trajectories
(shown in Fig. 3c). To find the best fit, the least squares error between the model
and the measured response was minimized using the MATLAB fmincon function.
During the fitting, each input parameter was allowed to vary from 0.1 to 10 times
with respect to the input value. Further constraints were placed on the parameters
so that they lie within a feasible biological range. For example, the activated
transcriptional rate must be several orders of magnitude larger than the basal
expression (αV+»αV and αW+»αW) and the transcriptional rates of the x gene and
activated y and z genes should be in the same order (αU ≈ αV+ ≈ αW+) (see
Supplementary Table 1). Because in the open-loop case, a modified version of y
gene (denoted as yc) is expressed from the promoter Ptot

YC and cannot sequester with
X, parameters αV, αV+, δV, βY, κ, κi, and Ptot

Y were set to zero. Once we found the
optimum set of parameter values that provided the best fit for the open-loop
response, these parameter values were then fixed during fitting all five trajectories
of the closed-loop response (shown in Fig. 3d) while varying only αV, αV+, δV, βY, κ,
and κi. This resulted in a set of 16 parameters that fit both open and closed-loop
responses (Fig. 3c, d, respectively). The fitting process was repeated 1000 times,
which gave a range for the 16 parameters (Supplementary Fig. 7) with 95%
confidence interval.

TXTL reactions. The cell-free expression system used in this work is myTXTL
from Arbor Biosciences. TXTL reactions were assembled using the Labcyte Echo
550 liquid handler, to volumes of 2 µl in a 96-well V-bottom plate (Corning Costar
3357 with caps Costar 3080) and incubated at 29 °C.

DNA. Plasmids were constructed using standard cloning techniques. P70a and P28a
are the strongest E. coli σ70 and σ28 promoters reported in TXTL, respectively. Each
plasmid contains the untranslated region and RBS named UTR1, originally from
the promoter 14 of the T7 phage genome, and either the σ70 promoter P70a or the
σ28 promoter P28a. UTR1 uses the strongest reported RBS in TXTL. All DNA
constructs with terminators use the strong synthetic terminator T500. All the
sequences of the plasmids and DNA parts (promoters and transcription termi-
nators) are reported in the DNA sequences Supplementary File24,25,36. The mSA
gene is 348 bp long, while flgM gene is 294 bp long. mSA is a soluble protein, like
FlgM. The mSA protein does not have a regulatory effect on gene expression in
these reactions and is used as a control for FlgM. For experiments with step
changes in the concentration of DNA, the TXTL reactions were assembled in the
same manner, using the Labcyte Echo 550, and incubated in a plate reader at 29 °C.
Reactions were then taken out of the plate reader, and the additional DNA was
added to the reaction using the Labcyte Echo 550. The well plate was then
immediately returned to the plate reader. The total time that the well plate was out
of the reader and at room temperature was less than two minutes. The step-change
of DNA added to the reactions diluted the TXTL reaction by <5%.

TXTL time-course fluorescence measurements. Fluorescence kinetics were
performed using the reporter protein deGFP, a truncated version of eGFP that is
more translatable in the TXTL system (25.4 kDa, 1 mg/mL= 39.38 µM)24. Mea-
surements were carried out on Synergy H1 and Neo2 (Biotek Instruments) plate
readers, using an excitation of 485 nm and emission of 525 nm, measuring every
3 min. To quantify the concentration of deGFP on the plate readers, a standard
curve of intensity vs. deGFP concentration was made using recombinant eGFP
(Cell Biolabs)36. All reactions were performed in at least triplicate.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Code availability
The programming code that was used to analyze the raw data that supports the findings
of this study are available from the corresponding author upon request.

Data availability
The source data underlying Figs. 2–6, Supplementary Figs. 1–6, 8–10, 12, 15, 21–23, 25–
27, 29 are provided as a Source Data file. All other data are available from the authors
upon reasonable request.
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Supplementary Figure 1. Controller response for a step change in the input PX. (a,c) Measured response for a step change 
in PX, which was increased from 0 nM to different concentrations (0.1-0.7 nM) after 4 hours of the reaction in the presence of 
an initial 1 nM of PYtot and PZtot each. The corresponding deGFP slopes for the (b) open-loop and (d) closed-loop cases. To 
disable the feedback in the open-loop case PYtot was replaced by PYCtot, which expresses a protein that cannot sequester with X 
(see Methods). Error bars are shown in the shaded region and were determined using the standard error of the mean of three or 
more repeats. A calibration factor was used to convert the measured deGFP fluorescent signal into the concentration. Before 
calculating deGFP slopes, measured deGFP responses were smoothed-out using the rloess smoothing method in MATLAB. 
Source data are provided as a Source Data file. 
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Supplementary Figure 2. Open-loop controller unable to track the reference signal independent of the absolute value 
of the output. Measured (a) deGFP response and (b) the corresponding slopes in the open-loop configuration at different initial 
concentrations of PX (0.1 - 1 nM) while initial PYCtot and PZtot were both 0.05 nM. (c) Summary of the deGFP slopes of the 
controller at 8 hours for a step change in PX. A linear regression with zero intercept was used to fit the deGFP slopes and the 
corresponding R-square values is 0.89. Error bars are from the SEM of at least three repeats. A calibration factor was used to 
convert the measured deGFP fluorescent signal into the concentration. Before calculating deGFP slopes, measured deGFP 
responses were smoothed-out using the rloess smoothing method in MATLAB. Source data are provided as a Source Data file. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 4 

 
Supplementary Figure 3. Control gene yc does not affect the open-loop controller response. Measured (a) deGFP response 
and (b) the corresponding slope of the integral controller in the open-loop configuration at different initial concentrations of 
PYCtot (0 - 1 nM) while initial PX and PZtot were both 1 nM each. Error bars are from the standard error of the mean (SEM) of at 
least three repeats. Source data are provided as a Source Data file. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 5 

 
Supplementary Figure 4. An increase in gene y concentration leads to a reduction in the output. Measured (a) deGFP 
response and (b) the corresponding slope of the integral controller in the closed-loop configuration at different initial 
concentrations of PYtot (0 - 1 nM) while initial PX and PZtot were both 1 nM each. Error bars are from the standard error of the 
mean (SEM) of at least three repeats. Source data are provided as a Source Data file. 
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Supplementary Figure 5. In the absence of input PX the controller response is negligible. Measured deGFP response of the 
integral controller in the (a) open-loop and (b) closed-loop configurations at two different initial concentrations of PX (0 and 
0.1 nM) while initial PYtot and PZtot were both 1 nM each. To disable the feedback in the open-loop case, PYtot was replaced by 
PYCtot. Error bars are from the SEM of at least three repeats. Source data are provided as a Source Data file. 
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Supplementary Figure 6. Results of the least squares fitting. (a-b) Comparing the model response with the measured deGFP 
response of the integral controller in the (a) open-loop and (b) closed-loop configurations at different initial concentrations of 
PX (0.1 - 0.7 nM) while initial PYtot and PZtot were both 1 nM. (c-d) Corresponding deGFP slopes for the (c) open-loop and (d) 
closed-loop operations. To disable the feedback in the open-loop case, PYtot was replaced by PYCtot. Error bars are from the SEM 
of at least three repeats. The ODE model shown in Fig. 3b was used to determine the response with parameters shown in Table 
1. Before calculating deGFP slopes, measured deGFP responses were smoothed-out using the rloess smoothing method in 
MATLAB. Source data are provided as a Source Data file. 
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Supplementary Figure 7. Histograms of the initial guesses and estimated parameters were obtained from 1000 samples that 
gave the lowest fitting error (see Methods). 
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Supplementary Figure 8. Comparing the predicted response of the integral controller with the measured response in the (a) 
open-loop and (b) closed-loop configurations for a step change in PX, and the corresponding deGFP slopes in (c) and (d) 
respectively. PX was increased from 0 nM to different concentrations (0.1-0.7 nM) after 2 hours of the reaction in the presence 
of initial 0.7 nM of PYtot and PZtot each. To disable the feedback in the open-loop case, PYtot was replaced by PYCtot. Error bars 
are from the SEM of at least three repeats. The ODE model shown in Fig. 3b was used to determine the response with parameters 
shown in Table 1. Before calculating deGFP slopes, measured deGFP responses were smoothed-out using the rloess smoothing 
method in MATLAB. Source data are provided as a Source Data file. 
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Supplementary Figure 9. Effect of the resource limitation in the TXTL reaction. (a-b) Comparing the model response with 
the measured deGFP response of the integral controller in the (a) open-loop and (b) closed-loop configurations at different 
initial concentrations of PX (0.1 - 0.7 nM) while initial PYtot and PZtot were both 1 nM. (c-d) Corresponding deGFP slopes for 
the (c) open-loop and (d) closed-loop operations. To disable the feedback in the open-loop case, PYtot was replaced by PYCtot. 
Error bars are from the SEM of at least three repeats. The ODE model shown in Fig. 3b was used to determine the response 
with parameters shown in Table 1. Measured open loop response starts saturating after 8 hours of the reaction, suggesting 
resource limitation in the reaction. After 8 hours, the reaction runs out of energy and is also limited by the degradation products 
accrued. Before calculating deGFP slopes, measured deGFP responses were smoothed-out using the rloess smoothing method 
in MATLAB. Source data are provided as a Source Data file. 
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Supplementary Figure 10. Comparing the closed-loop simplified model response (a) with V and (b) without V at different 
initial concentrations of PX (0.1 - 0.7 nM) while initial PYtot and PZtot were both 1 nM each. Error bars are from the SEM of at 
least three repeats. The ODE model shown in Fig. 4c was used to determine the model response with parameters shown in 
Table 1. In the simplified model without V, ODE of V was replaced by its steady-state value (see Note 1). Source data are 
provided as a Source Data file. 
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Supplementary Figure 11. Determining the effect of the reverse sequestration on the read-out signal at different initial 
concentrations of PX (0.1 - 0.7 nM) while initial PYtot and PZtot were both 1 nM each. The ODE model shown in Fig. 3b was used 
to determine the model response with parameters shown in Table 1. Here the dashed-lines represent the cases where κi = 0.  
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Supplementary Note 1 
 
 

 

From chemical reactions, we built an ODE model of the integral controller (see Fig. 3a):

dU

dt
= ↵UPX � �UU, (1)

dX

dt
= �XU � XY + i[XY ]� !XPY + ⌫P+

Y � !XPZ + ⌫P+
Z , (2)

dP+
Y

dt
= !XPY � ⌫P+

Y , (3)

dV

dt
= ↵V PY + ↵+

V P
+
Y � �V V, (4)

dY

dt
= �Y V � XY + i[XY ], (5)

d[XY ]

dt
= XY � i[XY ], (6)

dW

dt
= ↵WPZ + ↵+

WP+
Z � �WW, (7)

dP+
Z

dt
= !XPZ � ⌫P+

Z , (8)

dZ

dt
= �ZW � �GZ, (9)

dG

dt
= �GZ. (10)

Here and elsewhere, subscripts to the parameters indicate the corresponding species. The parameters ↵ and � are transcription
and translation rates, respectively. Each mRNA species (U , V and W ) has a degradation rate denoted as �. The parameters
 and i are the forward and reverse sequestration rates respectively, and the parameters ! and ⌫ are the association and
dissociation rates for the transcriptional activation reaction. The parameter � is the maturation rate and ↵+ represents increased
transcription rate compared to ↵. Considering mass-conservation, we assume that P tot

Y = PY + P+
Y and P tot

Z = PZ + P+
Z at all

times.
We find experimentally and numerically that the transcriptional activation reactions (3) and (8) are much faster than the

other reactions involved in the genetic network. Since both (3) and (8) are asymptotically stable, we used a quasi-steady-state
approximation to replace the values of P+

Y and P+
Z by their quasi-steady-state approximations (see P̄C below). Moreover, as

the RNA dynamics is much faster than the protein dynamics (due to the faster RNA degradation rates), and (1), and (7) are
asymptotically stable, a similar approximation was used to model the synthesis of X and Z using single reactions for each,
while keeping the two-step synthesis of Y to ensure that we consider an appropriate delay in the overall system dynamics
(Supplementary Fig. 10). We also ignore the reverse sequestration rate i as it has a limited impact on the output dynamics
(Supplementary Fig. 11). Ignoring (10), this leads to a simplified model for the controller:

dX

dt
⇡ �0

XPX � XY, (11)

dV

dt
⇡ ↵+

V P̄C � �V V, (12)

dY

dt
⇡ �Y V � XY, (13)

dZ

dt
⇡ �0

Z P̄C � �GZ, (14)

P̄C :=
X

X + ⌫
!

P tot
C . (15)

Here, �0
X = �X↵U

�U
, �0

Z =
�Z↵+

W
�W

, P tot
C = P tot

Y = P tot
Z , P tot

C = PC + P+
C and bar (̄ ) denotes a quasi-steady-state value. We have

validated this model by the comparing its response with the original model response, as shown in Supplementary Fig. 12. Note
that as long as the protein X is expressed at values that are below or of order ⌫

! , P̄C < P tot
C , which means that the y and z

genes have free promoter sites where X can bind to increase the production rates of Y and Z. If, instead, X � ⌫
! , then P̄C is

approximately equal to P tot
C , which means P̄C is independent of X, and so are Y and Z.
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Analytical solution for deGFP slopes for the open and closed-loop cases

To determine an analytical approximation to the steady-state for the closed-loop controller’s output, the right-hand sides of (11)
-(14) were set to zero:

0 = �0
XPX � XY, (16)

0 = ↵+
V P̄C � �V V, (17)

0 = �Y V � XY, (18)
0 = �0

Z P̄C � �GZ. (19)

Comparing (16) and (18) leads to:

V̄ ⇡ �0
X

�Y
PX . (20)

Using (17), (19), and (20), it can be shown that:

Z̄ ⇡ �0
Z

�G

�0
X

�Y

�V
↵+
V

PX . (21)

Using (10) and (21), it can be shown that:

dG

dt
⇡ �0

Z
�0
X

�Y

�V
↵+
V

PX . (22)

It should be noted that (22) is valid as long as enough promoter sites are available on the y and z genes, in other words, if the
protein X is expressed at values that are below or of order ⌫

! . For the cases where X � ⌫
! is true, P̄C ⇡ P tot

C , and this leads to:

Z̄ ⇡ �0
Z

�G
P tot
C . (23)

and therefore,
dG

dt
⇡ �0

ZP
tot
C . (24)

Note that (24) means that the reference tracking is not achieved, and also the output becomes heavily dependent on pertur-
bations. Thus, tracking and robustness are traded off depending on the range of X(t). Now to determine the approximate
analytical solution for the open-loop controller’s output, we can ignore (12) and (13) as the y gene is absent in the open-loop
operation, and so V and Y are not expressed. This leads to:

dX

dt
⇡ �0

XPX , (25)

dZ

dt
⇡ �0

Z P̄C � �GZ, (26)

P̄C ⇡ X

X + ⌫
!

P tot
C . (27)

Assuming at time t = 0, X = X0, and (25) can be written as:

X(t) ⇡ �0
XPXt+X0. (28)

At the steady-state,

Z̄ ⇡ �0
Z

�G
P̄C . (29)

Using (27) -(29), and (10), it can be shown that:

dG

dt
⇡ �0

Z
�0
X(�0

XPXt+X0)

�0
X(�0

XPXt+X0) +
⌫
!

P tot
C . (30)

From this analysis, it can be inferred that only the closed-loop controller’s output can follow the reference signal linearly, which
is the scaled value of PX (22), as long as the protein X is expressed at values that are below or of order ⌫

! . In contrast, in the
open-loop case, a nonlinear dependence of the output on X can be seen (30). Moreover, in our implementation, Z is directly
related the reported protein deGFP and because of that, in the analytical analysis, we used time derivative of G (scaled value
of Z (10)) as a comparison metric instead of the plant signal (V ), which is not a measurable quantity.
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Analytical solution for plant signal V

The simplified model of the controller:

dX

dt
⇡ �0

XPX � XY, (31)

dV

dt
⇡ ↵+

V P̄
+
Y � �V V, (32)

dY

dt
⇡ �Y V � XY, (33)

dZ

dt
⇡ �0

Z P̄
+
Z � �GZ, (34)

¯PY + :=
X

X + ⌫
!

P tot
Y , (35)

¯PZ+ :=
X

X + ⌫
!

P tot
Z . (36)

Similar to the analysis above, when the closed-loop controller is at the steady-state, it can be shown that:

V̄ ⇡
↵+
V

�V
P̄+
Y ⇡ �0

X

�Y
PX . (37)

Note that the steady-state value of V (V̄ ) is linearly proportional to the input PX and independent of the concentration of y
genes (P tot

Y ), and the association (!) and dissociation (⌫) rates. Thereby, the plant signal tracks the input PX robustly. This
is true when the protein X is expressed at values that are below or of order ⌫

! , so that P̄+
Y < P tot

Y . Using (37), it can be shown
that:

P̄+
Y ⇡ �0

X

�Y

�V
↵+
V

PX . (38)

From (35) and (36), it can be inferred that when P tot
Z = P tot

Y , P̄+
Z = P̄+

Y . Steady-state value of Z is

Z̄ ⇡ �0
Z

�G
P̄+
Z . (39)

Now using (37) - (39), and the fact that P̄+
Z = P̄+

Y , it can be shown that:

Z̄ ⇡ �0
Z

�G

�V
↵+
V

V̄ ⇡ �0
Z

�G

�0
X

�Y

�V
↵+
V

PX . (40)

Hence, the steady-state output of the controller Z̄ is linearly proportional to the plant signal (V̄ ) and so the input PX . We
can, therefore, use Z to read the plant signal.

Analytical equation for XR

Now to determine an analytical approximation of the error signal (XR), which is X � Y , (13) was subtracted from (11):

d

dt
(X � Y ) ⇡ �0

XPX � �Y V (t). (41)

This leads to:

XR = X � Y ⇡
Z t

0
(�0

XPX � �Y V (⌧))d⌧. (42)

Now using (20), it can be shown that:

XR = X � Y ⇡ �Y

Z t

0
V̄ � V (⌧)d⌧. (43)

Therefore, the error signal is a mathematical integral of the difference between the steady-state (V̄ ) and time dependent values
(V ) of the plant signal.
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Local stability analysis

We can also evaluate the stability of the steady-state response of the closed-loop controller to local perturbations through
local stability analysis. For simplicity, we ignore the reactions associated with z gene as they are not actively involved in the
closed-loop dynamics (Fig. 1a and b). Moreover, assuming the protein X is expressed at values that are below or of order ⌫

!
(for the linear reference tracking), the simplified model (11)-(15) can be reduced to:

dX

dt
⇡ �0

XPX � XY, (44)

dV

dt
⇡ �1X � �V V, (45)

dY

dt
⇡ �Y V � XY. (46)

where �1 = ↵+
V P

tot
C !/⌫. It can be shown that at the steady-state:

X̄ ⇡ �V �0
XPX

�Y �1
, (47)

V̄ ⇡ �0
XPX

�Y
, (48)

Ȳ ⇡ �1�Y
�V 

. (49)

Now we can calculate the Jacobian for the model shown in (44)-(46) at the steady-state shown in (47)-(49):
2

64

��Y �1
�V

0 ��V �0
XPX

�Y �1

�1 ��V 0

��Y �1
�V

�Y ��V �0
XPX

�Y �1

3

75 . (50)

It can be shown that the characteristic equation of the Jacobian is:

s3 +
⇣
�X Ū�V
�1�Y

+ �1�Y
�V

+ �V
⌘
s2 +

⇣
�2V 
�1�Y

+ �1�Y
⌘
s+ �V �XPX = 0. (51)

Using the Routh-Hurwitz criterion1, one can verify the stability of the system if the first column of the Routh array is positive.
For (51), it can be shown that this is true when:

(B + �V A
B )( B

�V
+ A

B�V
)�A > 0. (52)

Here, A = �V �0
XPX , B = �1�Y . Equation (52) is true for any values A, B and �.
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Supplementary Figure 12. Comparing the simplified model response with the original model in the (a) open-loop and (b) 
closed-loop configurations at different initial concentrations of PX (0.1 - 0.7 nM) while initial PYtot and PZtot were both 1 nM 
each. To disable the feedback in the open-loop case, PYtot was replaced by PYCtot. Error bars are from the SEM of at least three 
repeats. The ODE model shown in Fig. 3b was used to determine the original model response while the ODE model shown in 
Fig. 4c was used to determine the simplified model response with parameters shown in Table 1. Source data are provided as a 
Source Data file. 
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Supplementary Figure 13. Open-loop controller’s output has no steady-state. Simulated open-loop response of the integral 
controller at different initial concentrations of PX (0.1 - 0.7 nM) while initial PZtot was 1 nM. The ODE model shown in Fig. 3b 
was used to determine the response with parameters shown in Table 1. The X protein does not consume over time in the open-
loop case which causes Z to increase over time. 
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Supplementary Figure 14. Closed-loop controller’s output has a steady-state. Simulated closed-loop response of the 
integral controller at different initial concentrations of PX (0.1 - 0.7 nM) while initial PYtot and PZtot were both 1 nM each. The 
ODE model shown in Fig. 3b was used to determine the response with parameters shown in Table 1. Simulated response 
suggests that all the molecular species (except Y and G) involved in the genetic network approaches a steady-state at 8 hours. 
The slope of the measured response, which is the scaled value of Z, can be used to infer a steady-state behavior in the genetic 
network when operated in the closed-loop configuration.  
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Supplementary Figure 15. Comparing the responses determined using the approximate analytical solution (Fig. 4d) with the 
original model response for the (a) open and (b) closed-loop cases for a step change in PX, which was increased from 0 nM to 
different concentrations (0.1-0.7 nM) after 2 hours of the reaction in the presence of initial 0.7 nM of PYtot and PZtot each. To 
disable the feedback in the open-loop case, PYtot was replaced by PYCtot. Error bars are from the SEM of at least three repeats. 
The ODE model shown in Fig. 3b was used to determine the response with parameters shown in Table 1. Before calculating 
deGFP slopes, measured deGFP responses were smoothed-out using the rloess smoothing method in MATLAB. Source data 
are provided as a Source Data file. 
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Supplementary Figure 16. Fundamental limits on parameters of the closed-loop controller for the output to track the 
input PX. Simulated controller response in the open-loop and closed-loop cases at different initial concentrations of PX (1 - 80 
nM). (a) Summary of the deGFP slopes at 8 hours and the corresponding values of (b) X/(𝜈/𝜔).	The ODE model shown in Fig. 
3b was used to determine the response with parameters shown in Table 1. The simulations were conducted for 8 hours, and the 
maximum value of X(t) was used to determine the value of X/(𝜈/𝜔).	deGFP slopes were calculated from Z using (10) mentioned 
in Note 1.	The time derivative of G follows the input PX linearly only for the closed-loop case as long as enough promoter sites 
are available on y and z genes, in other words (d) if the protein X is expressed at values that are below or of order 𝜈/𝜔.  
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Supplementary Figure 17. Closed-loop controller tracks the input independent of the absolute value of the output. (a) 
Simulated controller response in at different initial concentrations of PX (0.1 - 4 nM) and the corresponding values of (b) 
X/(𝜈/𝜔). To match the output levels, in the open-loop case initial PZtot was both 0.1 nM while in the closed-loop case, PYtot and 
PZtot were both 1 nM each. The ODE model shown in Fig. 3b was used to determine the response with parameters shown in 
Table 1. The simulations were conducted for 8 hours, and the maximum value of X(t) was used to determine the value of 
X/(𝜈/𝜔). deGFP slopes were calculated from Z using (10) mentioned in Note 1. 
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Supplementary Figure 18. Predicting the integral controller response in the presence of disturbances. Simulated 
controller response in the (a) open-loop and (b) close-loop cases when disturbances were introduced in the concentration of 
PYtot and PZtot and (c-d) the corresponding normalized change in the deGFP slopes at 8 hours respectively. The ODE model 
shown in Fig. 3b was used to determine the response with parameters shown in Table 1. Normalization was done with respect 
to the first slope value when PYtot and PZtot=0.2 nM. 
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Supplementary Figure 19. Simulated closed-loop response of the controller to when disturbances were added in PYtot 
and PZtot. (a-b) Dynamic response of various species (see Fig. 3a) of the controller in the presence of disturbances in the 
concentration of PZtot (0.2 – 0.7 nM) while initial PX was 0.2 nM. The ODE model shown in Fig. 3b was used to determine the 
response with parameters shown in Table 1. 
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Supplementary Figure 20. Simulated open-loop response of the controller when disturbances were added in PZtot. (a-b) 
Dynamic response of various species (Fig. 3a) of the controller in the presence of disturbances in the concentration of PZtot (0.2 
– 0.7 nM) while initial PX was 0.2 nM. The ODE model shown in Fig. 3b was used to determine the response with parameters 
shown in Table 1. 
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Supplementary Figure 21. Measuring the controller response to disturbances added in DNA concentrations at a 
different range. (a-b) TXTL measurement of the response of the integral controller in the presence of disturbances in the 
concentration of PYtot and PZtot (0.5 - 1 nM) for the (a) open-loop and (b) closed-loop cases while initial PX was 0.5 nM. To 
disable the feedback in the open-loop case PYtot was replaced by PYCtot, which expressed a protein that cannot sequester with X. 
(c-d) Measured response of the controller when the disturbance in PYtot and PZtot was added in a step manner. Additional PYtot 

and PZtot were added (0.1-0.5 nM) after 4 hours of the reaction in the presence of initial 0.5 nM of PX, PYtot and PZtot each (see 
Methods). The error bars are shown in the shaded region and were determined using the standard error of the mean of two or 
more repeats. (e-h) Summary of the normalized deGFP slopes of the controller at 8 hours for (e, g) the open-loop and (f, h) 
closed-loop configurations. Normalization was done with respect to the first slope value for each variation in PYtot and PZtot. 
Before calculating deGFP slopes, measured deGFP responses were smoothed-out using the rloess smoothing method in 
MATLAB. The predicted response for each case was determined using the ODE model shown in Fig. 3b with parameters 
shown in Table 1. Source data are provided as a Source Data file. 
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Supplementary Figure 22. Measuring the controller response to disturbances added in DNA at a different range. (a-b) 
TXTL measurement of the response of the integral controller in the presence of disturbances in the concentration of PYtot and 

PZtot (0.7 - 1.2 nM) for the (a) open-loop and (b) closed-loop cases while initial PX was 0.7 nM. To disable the feedback in the 
open-loop case PYtot was replaced by PYCtot, which expressed a protein that cannot sequester with X. (c-d) Measured response 
of the controller when the disturbance in PYtot and PZtot was added in a step manner. Additional PYtot and PZtot were added (0.1-
0.5 nM) after 4 hours of the reaction in the presence of initial 0.7 nM of PX, PYtot and PZtot each (see Methods). The error bars 
are shown in the shaded region and were determined using the standard error of the mean of two or more repeats. (e-h) Summary 
of the normalized deGFP slopes of the controller at 8 hours for (e, g) the open-loop and (f, h) closed-loop configurations. 
Normalization was done with respect to the first slope value for each variation in PYtot and PZtot. Before calculating deGFP 
slopes, measured deGFP responses were smoothed-out using the rloess smoothing method in MATLAB. The predicted 
response for each case was determined using the ODE model shown in Fig. 3b with parameters shown in Table 1. Source data 
are provided as a Source Data file. 
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Supplementary Figure 23. Open-loop controller cannot suppress the disturbances independent of the absolute value of 
the output. (a) TXTL measurement of the response of the integral controller in the presence of disturbances in the concentration 
of PYCtot and PZtot (0.2 - 0.7 nM) for the open-loop case while initial PX was 0.02 nM. Error bars are shown in the shaded region 
and were determined using the standard error of the mean of three or more repeats. (b) Summary of the normalized deGFP 
slopes of the controller at 8 hours. Normalization was done with respect to the first slope value. Before calculating deGFP 
slopes, measured deGFP responses were smoothed-out using the rloess smoothing method in MATLAB. The predicted 
response for each case was determined using the ODE model shown in Fig. 3b with parameters shown in Table 1. Source data 
are provided as a Source Data file. 
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Supplementary Figure 24. Standard curve of GFP at 29° C and 33° C, and 29° C and 37° C. A two-degree polynomial 
was used to fit the endpoints and the corresponding R-square value is 0.99 for all the cases. The slopes at (a) 33° C and (b) 37° 
C are reduced only by factors of (a) 1.07 and (b) 1.18 compared to 29° C respectively. To account this effect, all the data 
collected at 33° C and 37° C were multiplied by the respective factors to get the accurate, temperature-adjusted, GFP 
concentration. 
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Supplementary Figure 25. The corresponding deGFP slopes for the date shown in Fig. 6 (main text) for the (a) open-loop 
(PYCtot and PZtot were both 0.1 nM) and (b) closed-loop (PYtot and PZtot were both 1 nM each) cases while initial PX was 0.1 nM. 
Before calculating deGFP slopes, measured deGFP responses were smoothed-out using the rloess smoothing method in 
MATLAB. Source data are provided as a Source Data file. 
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Supplementary Figure 26. Open-loop controller cannot suppress the global disturbance independent of the absolute 
value of the output. (a,b) Measured response of the controller at three different external constant change in the reaction 
temperatures for the open-loop case while initial PX was 0.1 nM, and (a) PYCtot and PZtot were both 0.5 nM and (b) PYCtot and 
PZtot were both 1 nM each. (c,d) The corresponding deGFP slopes and (e,f) summary of the normalized deGFP slopes at 8 hours 
respectively. The error bars are shown in the shaded region and were determined using the standard error of the mean of two 
or more repeats. The responses shown in (c, d) were normalized with respect to the deGFP slope value recorded at 29° C. Plate 
readers were calibrated at 29° C, 33° C and 37° C separately to a standard curve of GFP to ensure fluorescence variation reflects 
protein concentration variation (see Supplementary Fig. 24) while at 33° C, the same standard curve of GFP was used as for 
29° C. Before calculating deGFP slopes, measured deGFP responses were smoothed-out using the rloess smoothing method in 
MATLAB. Source data are provided as a Source Data file. 
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Supplementary Figure 27. Closed-loop controller suppresses global disturbance at a different value of the input PX. (a,b) 
Measured response of the controller at three different external constant change in the reaction temperatures for the (a) open-
loop (PYCtot and PZtot were both 0.1 nM) and (b) closed-loop (PYtot and PZtot were both 1 nM each) cases while initial PX was 0.3 
nM. (c,d) The corresponding deGFP slopes and (e,f) summary of the normalized deGFP slopes at 8 hours respectively. To 
disable the feedback in the open-loop case, PYtot was replaced by PYCtot, which expresses a protein that cannot sequester with X. 
The error bars are shown in the shaded region and were determined using the standard error of the mean of two or more repeats. 
The responses shown in (c, d) were normalized with respect to the deGFP slope value recorded at 29° C. Plate readers were 
calibrated at 29° C, 33° C and 37° C separately to a standard curve of GFP to ensure fluorescence variation reflects protein 
concentration variation (see Supplementary Fig. 24) while at 33° C, the same standard curve of GFP was used as for 29° C. 
The closed-loop behavior is unchanged (within experimental error), while the open-loop behavior changes drastically. Before 
calculating deGFP slopes, measured deGFP responses were smoothed-out using the rloess smoothing method in MATLAB. 
Source data are provided as a Source Data file.  
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Supplementary Note 2 
 
 

 
 
Supplementary Figure 28. Schematic representation of the framework used to model the depletion of energy resources 
in the TXTL reactions. Here, RTX and RTL represent the initial constant resources available in the reaction mixture that facilitate 
transcriptional and translation reactions respectively. The production rate of mRNA will be DNA concentration-dependent 
including steady-state level and saturation effect, and the production rate of protein will be mRNA concentration-dependent 
which governs the consumption rate of RTL.2 

 

The updated ODE model of the controller to account for the resource competition and depletion in measured responses: 

 

dU

dt
= ↵U

RTXPX

KTX + PX
� �UU, (53)

dX

dt
= �X

RTLU

K1 + U
� XY + i[XY ]� !XPY + ⌫P+

Y � !XPZ + ⌫P+
Z , (54)

dP+
Y

dt
= !XPY � ⌫P+

Y , (55)

dV

dt
= ↵V

RTXPY

KTX + PY
+ ↵+

V

RTXP+
Y

KTX + P+
Y

� �V V, (56)

dY

dt
= �Y

RTLV

K1 + V
� XY + i[XY ], (57)

dW

dt
= ↵W

RTXPZ

KTX + PZ
+ ↵+

W

RTXP+
Z

KTX + P+
Z

� �WW, (58)

dP+
Z

dt
= !XPZ � ⌫P+

Z , (59)

dZ

dt
= �Z

RTLW

K1 +W
� �GZ, (60)

dG

dt
= �GZ, (61)

dRTX

dt
= �TX

RTXPX

KTX + PX
� �TX

RTXPY

KTX + PY
..

� �TX
RTXP+

Y

KTX + P+
Y

� �TX
RTXPZ

KTX + PZ
� �TX

RTXP+
Z

KTX + P+
Z

, (62)

dRTL

dt
= ��TL

RTLU

KTL + U
� �TL

RTLV

KTL + V
� �TL

RTLW

KTL +W
. (63)
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Supplementary Figure 29: Updated ODE model is capable of following the effect of resource limitation in the TXTL 
reactions. (a-b) Comparing the updated model response with the measured deGFP response of the integral controller in the (a) 
open-loop and (b) closed-loop configurations at different initial concentrations of PX (0.1 - 0.7 nM) while initial PYtot and PZtot 

were both 1 nM. (c-d) Corresponding deGFP slopes for the (c) open-loop and (d) closed-loop operations. To disable the 
feedback in the open-loop case, PYtot was replaced by PYCtot. Error bars are from the SEM of at least three repeats. The ODE 
model shown in (53)-(63) was used to determine the response with parameters shown in Table 1 and other parameters were 
KTX = 4.23×10-7 M, δTX = 9.08×10-6 s-1, KTL =1.13×10-5 M, δTL = 0.00066 s-1, K1 =3.31×10-5 M, RTX =1.99×10-7, RTL = 8.06×10-

5. Unlike the rest of the cases, while modeling the open-loop response, only κ and κi were set to zero. This is to account for the 
TXTL resource consumption by yc gene (control gene for open-loop case). Before calculating deGFP slopes, measured deGFP 
responses were smoothed-out using the rloess smoothing method in MATLAB. Source data are provided as a Source Data file. 
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Supplementary Figure 30. Closed-loop controller can suppress the disturbances added in the association rate 𝜔. 
Simulated controller response in the (a) open-loop (PZtot = 1 nM) and (b) close-loop (PYtot = PZtot = 1 nM) cases when 
disturbances were introduced in 𝜔 and (c-d) normalized change in the deGFP slopes at 8 hours respectively. Initial PX was 
0.02. The ODE model shown in Fig. 3b was used to determine the response with parameters shown in Table 1. Normalization 
was done with respect to the deGFP slope calculated at the nominal value of 𝜔. 
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Supplementary Figure 31. Closed-loop controller can suppress the disturbances added in the dissociation rate 𝜈. 
Simulated controller response in the (a) open-loop (PZtot = 1 nM) and (b) close-loop (PYtot = PZtot = 1 nM) cases when 
disturbances were introduced in 𝜈 and (c-d) normalized change in the deGFP slopes at 8 hours respectively. Initial PX was 
0.02 nM. The ODE model shown in Fig. 3b was used to determine the response with parameters shown in Table 1. 
Normalization was done with respect to the deGFP slope calculated at the nominal value of 𝜈. 
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Supplementary Figure 32. Effect of the disturbance on the closed-loop output as a function of sequestration and 
activation association rates. Simulated closed-loop controller response for different values of the (a) sequestration rate (κ) 
and (b) activation association rate (𝜔). Initial PX was 0.02 nM while initial PYtot and PZtot were both 1 nM each. The ODE model 
shown in Fig. 3b was used to determine the response with parameters shown in Table 1, and the values are reported at 12 hours. 
Normalization was done with respect to the deGFP slopes calculated at the nominal parameter values. 
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Supplementary Table 1. List of constraints placed on the parameters during the fitting. These constraints are in agreement 
with the published literature, and allowed us to determine the parameter values that are biologically realistic.3-6 

 

Parameters Minimum Value  Maximum Value  Units 

αU 0.01 0.8 s-1 

αV 10-8 10-4 s-1 

αV+ 
0.01 0.8 s-1 

αW 
10-8 10-4 s-1 

αW+ 
0.01 0.8 s-1 

δU 
10-5 10-2 s-1 

δV 
10-5 10-2 s-1 

δW 
10-5 10-2 s-1 

βX 
10-4 10-2 s-1 

βY 
10-4 10-2 s-1 

βZ 
10-4 10-2 s-1 

κ 
104 107 M-1 s-1 

κi 
10-5 10-3  s-1 

ω 104 106 M-1 s-1 

ν 
10-2 10 s-1 

ϒG 
10-4 10-2 s-1 
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